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Exercise 1

For the collisions with small deflection angle, the momentum transfer cross-

section is: 5 o
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with bgg = 47:1610":1)2 and p = 77721:;32 we can write this as follows
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The cross-section o, has to be compared with the cross-section for the col-
lisions with a deflection angle (see remark at end) 6 > 90°:
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The ratio between them is:
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and for mso > my (i.e., for electrons colliding with nucleus of deuterium or
tritium):
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If T. = T; = 1 keV the coulomb logarithm is (formulary NRL, page 34)
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Therefore —2- = 60 > 1. In general, for my 3> m, with a typical temperature
090
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of a plasma used in thermonuclear fusion applications, we have —2 > 1. We

o
can then conclude that it’s possible to neglect the effects of the cogl’loisions with
6 > 90°.

Remark: In principle, we should compare o, to g9, the momentum trans-
fer cross-section for deflection angles # > 90°, which is not the same as ogg.
However, we can show that the difference is small:
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where we used Ap = p"2—(1 — cosf) (see Fasoli, App. B), do = 2mbdb
and the final equality holds in the limit mﬂ2m2 ~ 1 as mg > my.
In the integral, (1 — cosf) varies between 1 at § = 90 and 2 at 6 = 180°.

Thus,
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Exercise 2

Consider the collisions between electrons and ions. Having v; < v, and mg >
my, it’s possible to neglect the velocity of the ions (v; =~ 0): the results for o,
that we have found for the centre-of-mass reference frame are then also valid in
the laboratory reference frame.

For the electrons with velocity v, the momentum transfer rate due to the col-
lisions with ions (ion density n;) is:
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with o, given by o, = e mimavt 2 (see exercise 1). With m; = m, <

mo = M;, g1 = —e and g2 = Ze, we find:
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The total momentum lost per second (in the 3 spatial directions) is given by

di .
@ _ —v¢*m.¥. Now we have to average this quantity:
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The normalized distribution function is:
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where Uy = vqZ is the drift velocity in the z direction. Since vy < Vipe =
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we can approximate the distribution function:
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where feo(?) is the maxwellian distribution function with vg = 0:
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Therefore, the component in the x direction of (dp/dt) is
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The first term in the right-side of the equation (22) is zero, because it’s the inte-
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gral of an anti-symmetric function, f.o and v,
is anti-symmetric.

From the physical point of view, the total momentum of the unperturbed
electron population (ie vg = 0) is zero and the total momentum of the targets
is also zero due to the approximation v, > v; ~ 0. Therefore, it’s not possible
to have a net transfer of momentum p between the two populations. This is of
course also true in the others directions (y and z).
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Solving the integral:
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where we used the approximation In A independent of v.

In general, we have v =  /v2 4+ v2 + vZ. Since the function f.o(?) is symmet-

ric in the space of the variables (v, vy, v,), we can reduce the problem to a single

dimension: v2 = é 2. Using a spherical geometry, we have: d%v = 4rv?dv.

And then we find:
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To solve the integral Is we can make the substitution:

£ =0"/(2vEh) = dv* =20}, dE (25)
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vp' is in inverse proportion with the cube of v but v is a quadratic function of the
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components of the vector v: z/;/Z xv3 = <, fv2 + vg + vg)



therefore:
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The momentum of the electron population is p = m.vy. The average of the
momentum loss rate is:
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and finally we can conclude that:
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We could also suppose Pf,/ (N V;/ *(vghe), overestimating PZ/ ‘



Exercise 3

The « particles will collide with the three species (electrons, deuterium ions
and tritium ions) losing their energy and therefore their velocity. The estimated
relaxation time is necessarily a function of the a’s velocity.

The characteristic velocity of the particles is the thermal velocity. Using the
given parameters, we obtain:
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The a’s velocity is given by their energy:
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For E, = 3.5 MeV, v, = 1.3 x 107 m/s and therefore:
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The last relation is valid as long as E, > 10 keV. For E, down to 100 keV
for example, well below the initial 3.5 MeV, we still have v, &= 3vgn, p. (30) is
therefore the regime important to determine the main energy loss of the a’s.
What happens for £, < 10 — 100 keV is therefore neglected here.

The general form of vg, for collisions of particles of the species j (projectiles)
upon particles of the species k (targets) is
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Therefore the three collision frequencies taking part in the energy transfer pro-
cess are:
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where we have used the relations:
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and
np =nr = 0.5n,

Strictly speaking, the velocity in the denominator is relative to the centre-of-
mass reference frame. Usually, this relative velocity is dominated by the velocity
of one particle (target particle or on-coming particle). That is the case for the
three interactions studied and that’s why the electron thermal velocity (target

Ze (Vth,e > vq). The factor % 2
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particles) is present in the expression of Uy =

in the expression of Dgi “ is due to the Maxwellian distribution of the electron

velocities. It can be obtained from an integration over the electron distribution
function or from the general expressions in the NRL Plasma Formulary on page
31.

At the beginning of the relaxation process (E, = 3.5 MeV), the frequencies
are equal to:
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5.5 s71: the a particles transmit their energy to the electrons.
In this case, the relaxation time is given by:
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We can conclude that:

e At the beginning the electrons are more effective in the o thermalisation
process. Only when E, < (M)l/sT, or E, < 240 keV, the deuterium

dme
ions are more effective than the electrons (the tritium ions are playing an

important role in the thermalisation process for lower energies).

e Since the energy transfer process due to the collisions between « particles
and electrons during the transition F, = 3.5MeV — 240 keV is more
important than the transition E, = 240 keV — 10 keV, the electrons are
heated more than the ions.



