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Exercise 1

For the collisions with small deflection angle, the momentum transfer cross-
section is:

σp = σEk

m1 +m2

2m1
=

q21q
2
2

2πϵ20

ln Λ

m1m2v4
m1 +m2

2m1
(1)

with b90 = q1q2
4πϵ0µv2 and µ = m1m2

m1+m2
we can write this as follows

σp = 4πb290 ln Λ
m2

m1 +m2
(2)

The cross-section σp has to be compared with the cross-section for the col-
lisions with a deflection angle (see remark at end) θ ≥ 90◦:

σ90 = πb290 (3)

The ratio between them is:

σp

σ90
= 4 lnΛ

m2

m1 +m2
(4)

and for m2 ≫ m1 (i.e., for electrons colliding with nucleus of deuterium or
tritium):

σp

σ90
≈ 4 lnΛ (5)

If Te = Ti = 1 keV the coulomb logarithm is (formulary NRL, page 34)

lnΛ = 24− ln

(√
ne[cm−3]

T [eV ]

)
≈ 24− ln

(√
1014

103

)
≈ 15 (6)

Therefore
σp

σ90
≈ 60 ≫ 1. In general, for m2 ≫ m1 with a typical temperature

of a plasma used in thermonuclear fusion applications, we have
σp

σ90
≫ 1. We

can then conclude that it’s possible to neglect the effects of the collisions with
θ ≥ 90◦.
Remark: In principle, we should compare σp to σ90,p, the momentum trans-
fer cross-section for deflection angles θ ≥ 90◦, which is not the same as σ90.
However, we can show that the difference is small:
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σ90,p =
ν90,p
nv

=
1

nv

1

|⃗p|
d|p⃗|
dt

∣∣∣∣
θ≥90

(7)

=
1

nv

1

mv

∫ b90

0

∆pnvdσ (8)

=
m2

m1 +m2

p

mv

∫ b90

0

(1− cosθ)2πbdb (9)

=
p

mv

∫ b90

0

(1− cosθ)2πbdb (10)

=

∫ b90

0

(1− cosθ)2πbdb (11)

where we used ∆p = p m2

m1+m2
(1 − cosθ) (see Fasoli, App. B), dσ = 2πbdb

and the final equality holds in the limit m2

m1+m2
≈ 1 as m2 ≫ m1.

In the integral, (1 − cosθ) varies between 1 at θ = 90 and 2 at θ = 180◦.
Thus,

σ90 =

∫ b90

0

1× 2πbdb < σ90,p <

∫ b90

0

2× 2πbdb = 2σ90 (12)
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Exercise 2

Consider the collisions between electrons and ions. Having vi ≪ ve and m2 ≫
m1, it’s possible to neglect the velocity of the ions (vi ≈ 0): the results for σp

that we have found for the centre-of-mass reference frame are then also valid in
the laboratory reference frame.
For the electrons with velocity ve, the momentum transfer rate due to the col-
lisions with ions (ion density ni) is:∣∣∣∣dpdt

∣∣∣∣ = νe/ip · p (13)

where
νe/ip = niσpve (14)

with σp given by σp =
q21q

2
2

2πϵ20

ln Λ
m1m2v4

m1+m2

2m1
(see exercise 1). With m1 = me ≪

m2 = Mi, q1 = −e and q2 = Ze, we find:

νe/ip = ni
Z2e4

4πε20

ln Λ

m2
ev

3
e

(15)

The total momentum lost per second (in the 3 spatial directions) is given by
dp⃗

dt
= −νe/ip mev⃗. Now we have to average this quantity:〈

dp⃗

dt

〉
= −

∫
νe/ip fe(v⃗)mev⃗ d

3v (16)

The normalized distribution function is:

fe(v⃗) =

(
me

2π Te

)3/2

exp

[
−me(v⃗ − v⃗d)

2

2Te

]
(17)

where v⃗d = vdx̂ is the drift velocity in the x direction. Since vd ≪ vthe =
(Te/me)

1/2

me(v⃗ − v⃗d)
2

2Te
=

v2

2 v2the
+

v2d
2 v2the

− v⃗ · v⃗d
v2the

≈ v2

2 v2the
− v⃗ · v⃗d

v2the
=

v2

2 v2the
− vx vd

v2the
(18)

we can approximate the distribution function:

fe(v⃗) =

(
me

2π Te

)3/2

exp

[
− v2

2 v2the
+

vx vd
v2the

]
=

(
me

2π Te

)3/2

exp

[
− v2

2 v2the

]
exp

[
vx vd
v2the

]
(19)

≈
(

me

2π Te

)3/2

exp

[
− v2

2 v2the

] [
1 +

vx vd
v2the

]
= fe0(v⃗)

[
1 +

vx vd
v2the

]
(20)

where fe0(v⃗) is the maxwellian distribution function with vd = 0:

fe0(v⃗) =

(
me

2π Te

)3/2

exp

[
− v2

2 v2the

]
(21)
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Therefore, the component in the x direction of ⟨dp⃗/dt⟩ is:〈
dpx
dt

〉
= −

∫ +∞

−∞

[
1 +

vx vd
v2the

]
fe0(v⃗) ν

e/i
p mevx d

3v⃗

= −
∫ +∞

−∞
fe0(v⃗) ν

e/i
p mevx d

3v⃗

−
∫ +∞

−∞

vxvd
v2the

fe0(v⃗) ν
e/i
p mevx d

3v⃗ (22)

The first term in the right-side of the equation (22) is zero, because it’s the inte-

gral of an anti-symmetric function, fe0 and ν
e/i
p are symmetric1, vx ∈ (−∞,∞)

is anti-symmetric.
From the physical point of view, the total momentum of the unperturbed

electron population (ie vd = 0) is zero and the total momentum of the targets
is also zero due to the approximation ve ≫ vi ≈ 0. Therefore, it’s not possible
to have a net transfer of momentum p⃗ between the two populations. This is of
course also true in the others directions (y and z).

Solving the integral:〈
dpx
dt

〉
= −

∫
vx vd
v2the

fe0(v⃗) ν
e/i
p mevx d

3v⃗ =

= −ni
Z2e4

4πε20

ln Λ

mev2the
vd

∫
fe0(v⃗)

v2x
v3

d3v⃗︸ ︷︷ ︸
I1

(23)

where we used the approximation lnΛ independent of v.

In general, we have v =
√
v2x + v2y + v2z . Since the function fe0(v⃗) is symmet-

ric in the space of the variables (vx, vy, vz), we can reduce the problem to a single
dimension: v2x = 1

3v
2. Using a spherical geometry, we have: d3v = 4πv2dv.

And then we find:

I1 =

∫
fe0(v⃗)

v2x
v3

d3v⃗ =
1

3

∫
fe0(v)

v2

v3
4πv2dv

=
1

3

∫ ∞

0

fe0(v) 2π(2v dv) =
2π

3

∫ ∞

0

fe0(v) dv
2

=
2π

3

1

(2π)3/2v3the

∫ ∞

0

exp

[
− v2

2 v2the

]
dv2︸ ︷︷ ︸

I2

(24)

To solve the integral I2 we can make the substitution:

ξ = v2/(2 v2the) ⇒ dv2 = 2 v2the dξ (25)

1ν
e/i
p is in inverse proportion with the cube of v but v is a quadratic function of the

components of the vector v: ν
e/i
p ∝ v−3 =

(√
v2x + v2y + v2z

)−3
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therefore:

I2 =

∫ ∞

0

exp

[
− v2

2 v2the

]
dv2 = 2 v2the

∫ ∞

0

e−ξdξ =

= 2 v2the
[
−e−ξ

]∞
0

≡ 2 v2the (26)

and

I1 =
2π

3

1

(2π)3/2v3the
2 v2the =

4π

3(2π)3/2
1

vthe
=

1

3

(
2

π

)1/2
1

vthe
(27)

The momentum of the electron population is p = mevd. The average of the
momentum loss rate is:

νe/ip =
1

p

∣∣∣∣〈dpx
dt

〉∣∣∣∣ = 1

mevd
ni

Z2e4

4πε20

ln Λ

mev2the
vd

1

3

(
2

π

)1/2
1

vthe

=
niZ

2e4

4πε20

ln Λ

m2
ev

3
the︸ ︷︷ ︸

νe/ip (vthe)

[
1

3

(
2

π

)1/2
]

(28)

and finally we can conclude that:

νe/ip =

[
1

3

(
2

π

)1/2
]
νe/ip (vthe) ≈ 0.26 · νe/ip (vthe) (29)

We could also suppose ν
e/i
p ∼ ν

e/i
p (vthe), overestimating ν

e/i
p .
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Exercise 3

The α particles will collide with the three species (electrons, deuterium ions
and tritium ions) losing their energy and therefore their velocity. The estimated
relaxation time is necessarily a function of the α’s velocity.

The characteristic velocity of the particles is the thermal velocity. Using the
given parameters, we obtain:

vth,e =

√
Te

me
= 4.19× 107 m/s

vth,D =

√
TD

2mp
= 6.92× 105 m/s

vth,T =

√
TT

3mp
= 5.65× 105 m/s

The α’s velocity is given by their energy:

vα =

√
2Eα

4mp
= 6.92× 103

√
Eα[eV ] m/s

For Eα = 3.5 MeV, vα = 1.3× 107 m/s and therefore:

vth,T ≲ vth,D ≪ vα < vth,e (30)

The last relation is valid as long as Eα ≫ 10 keV. For Eα down to 100 keV
for example, well below the initial 3.5 MeV, we still have vα ≈ 3vth,D. (30) is
therefore the regime important to determine the main energy loss of the α’s.
What happens for Eα ≲ 10− 100 keV is therefore neglected here.

The general form of νEk
for collisions of particles of the species j (projectiles)

upon particles of the species k (targets) is

ν
j/k
Ek

∼ nk

Z2
j Z

2
ke

4

2πε20

ln Λk

mj mkv3j

Therefore the three collision frequencies taking part in the energy transfer pro-
cess are:

ν̄
α/e
Ek

≃ 1

3

√
2

π
ne

4e4

2πε20

ln Λ

4mpme

1

v3the
≈ 5.5 s−1 (31)

ν
α/D
Ek

≃ ne

2

4e4

2πε20

ln Λ

4mp 2mp

1

v3α
= ν

α/e
Ek

√
9πmp

4me

(
T

Eα

)3/2

(32)

ν
α/T
Ek

=
2

3
ν
α/D
E (33)

where we have used the relations:

lnΛ = 24− ln

(√
ne[cm−3]

T [eV]

)
≈ 24− ln

(√
1014

104

)
≈ 17.1
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and
nD = nT = 0.5ne

Strictly speaking, the velocity in the denominator is relative to the centre-of-
mass reference frame. Usually, this relative velocity is dominated by the velocity
of one particle (target particle or on-coming particle). That is the case for the
three interactions studied and that’s why the electron thermal velocity (target

particles) is present in the expression of ν̄
α/e
Ek

(vth,e ≫ vα). The factor 1
3

√
2
π

in the expression of ν̄
α/e
Ek

is due to the Maxwellian distribution of the electron
velocities. It can be obtained from an integration over the electron distribution
function or from the general expressions in the NRL Plasma Formulary on page
31.

At the beginning of the relaxation process (Eα = 3.5 MeV), the frequencies
are equal to:

ν
α/D
Ek

≈ 9.4× 10−2 s−1 ν
α/T
Ek

≈ 6.3× 10−2 s−1

therefore with
√

9πmp

4me

(
T
Eα

)3/2
≈ 1.7 × 10−3, we have ν

α/D
Ek

, ν
α/T
Ek

≪ ν̄
α/e
Ek

≈
5.5 s−1: the α particles transmit their energy to the electrons.

In this case, the relaxation time is given by:

τ =
(
ν
α/D
Ek

+ ν
α/T
Ek

+ ν̄
α/e
Ek

)−1

≈
(
ν̄
α/e
Ek

)−1

= 183 ms

We can conclude that:

• At the beginning the electrons are more effective in the α thermalisation

process. Only when Eα ≲
( 9πmp

4me

)1/3
T , or Eα ≲ 240 keV, the deuterium

ions are more effective than the electrons (the tritium ions are playing an
important role in the thermalisation process for lower energies).

• Since the energy transfer process due to the collisions between α particles
and electrons during the transition Eα = 3.5MeV → 240 keV is more
important than the transition Eα = 240 keV → 10 keV, the electrons are
heated more than the ions.
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