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Exercise 1

a) The continuity equation for the density is:

∂n

∂t
+∇ · Γ = S − αn2 (1)

where S is the source term that ensures ∂n
∂t = 0 and −αn2 is the loss due

to the recombination process. Using the Fick’s law:

Γ = −D∇n (2)

We can express the global transport in the volume V as:∫
V

∂n

∂t
d3r︸ ︷︷ ︸

dN

dt

+

∫
V

∇ · (−D∇n)d3r︸ ︷︷ ︸∫
∂V

d2s · (−D∇n)

=

∫
V

Sd3r − α

∫
V

n2d3r (3)

The integral
∫
∂V

(Gauss’s theorem) is done over the boundary of the
considered volume and s is the outward-pointing unit vector normal to
the surface. Due to the slab geometry (figure 1), we only have one spatial
independent variable (x):

∇n ≡ dn

dx
x̂

therefore the integral along the directions y and z is a constant A (un-
known) equal to the surface through which the flux is present:∫

∂V

d2s · (−D∇n) = −AD

(
dn

dx

∣∣∣∣
L

− dn

dx

∣∣∣∣
−L

)
(4)

The equation (3) can be rewritten as:

dN

dt
= AD

dn

dx

∣∣∣∣L
−L

+A

∫ L

−L

S dx− αA

∫ L

−L

n2dx = 0 (5)

with
dn

dx

∣∣∣∣L
−L

= − n0π

2L
sin
(πx
2L

) ∣∣∣L
−L

= −n0π

L
(6)

1



and, using the trigonometric identity cos2 ξ = 1/2
[
1 + cos(2ξ)

]
∫ L

−L

n2dx = n2
0

∫ L

−L

cos2
(πx
2L

)
dx = n2

0

∫ L

−L

1

2

[
1 + cos

(πx
L

)]
dx = n2

0L

(7)

⇒
∫ L

−L

Sdx = αn2
0L+

Dn0π

L
(8)

b) The value of the density ñ0 necessary to have a loss rate due to the diffusion
equal to that due to the recombination is:

Dñ0π

L
= αñ2

0L → ñ0 =
πD

αL2
=

π · 0.1 m2/s

10−15 m3/s · (2 m)
2 ≈ 8×1013 m−3 (9)

When the density is bigger than ñ0 the recombination process is the dom-
inant one.

n
0

n(x)=n
0
cos(πx/2L)

x−L L

Figure 1: Density profile for a slab geometry

c) To estimate the confinement time τp we can use the following relation:

N0

τp
=

dN

dt

∣∣∣∣
lost

(10)

with

N0 =

∫
V

nd3r = An0

∫ L

−L

cos
(πx
2L

)
dx = An0

2L

π
sin
(πx
2L

) ∣∣∣∣L
−L

= An0
4L

π
(11)

and therefore

τp =
4Ln0/π

αn2
0L+Dn0π/L

=
4/π

αn0 +Dπ/L2
=

4/π

10−15 · 8× 1013 + 0.1π
22

≈ 8 s, for n0 = ñ0

(12)
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Exercise 2

a) The process can be described as an ambipolar diffusion process, with dif-
fusion coefficient

Da ≈ 2Di = 2
v2thi
νi/n

(13)

where νi/n = nnσi/nvthi is the frequency of ion/neutral collisions. There-
fore we have

Da ≈ 2
vthi

nnσi/n
(14)

b) The continuity equation describing this process writes as

∂n

∂t
−∇ · (D∇n) = S

Therefore, since the system has cylindrical symmetry, with only a radial
dependence (∂/∂θ = ∂/∂z = 0), the diffusion equation reads, in stationary
conditions, as

−1

r

∂

∂r

[
rD(r)

∂n

∂r

]
= S(r)

where S(r) = S0 for r ≤ rs and S(r) = 0 for r > rs. The diffusion
coefficient is assumed to be constant, D(r) = Da. We first solve for the
density in the source region. Integrating this expression from r = 0 to r,∫ r

0

∂

∂r
(r
∂n

∂r
)dr = − S0

Da

r2

2

and imposing the regularity condition r ∂n
∂r

∣∣
r=0

= 0, we find

n(r) = n(0)− S0

Da

r2

4
for 0 < r ≤ rs

where n(0) is unknown for the moment. Now we solve for the density in
the outer region,

∂

∂r
(r
∂n

∂r
) = 0

Therefore
∂n

∂r
=

C

r

where C = rs
∂n
∂r

∣∣∣
rs
. Integrating this expression from r = rs to r, we get

n(r) = n(rs) + rs
∂n

∂r

∣∣∣
rs
ln (

r

rs
) for rs < r ≤ rc

Imposing the boundary condition n(rc) = 0 and the matching conditions
at r = rs,
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lim
r→r+s

n(r) = lim
r→r−s

n(r)

lim
r→r+s

∂n

∂r
= lim

r→r−s

∂n

∂r

we get the general solution for the density profile,

n(r) =
S0

Da

r2s
2

[1
2
− ln

(rs
rc

)]
− S0

Da

r2

4
for r ≤ rs

n(r) = − S0

Da

r2s
2

ln
( r

rc

)
for r ≥ rs

c) At r = 0 we have

n(0) =
S0

Da

r2s
2

[1
2
− ln

(rs
rc

)]
=

S0nnσi/n

2vthi

r2s
2

[1
2
− ln

(rs
rc

)]
Therefore

n(0)

nn
=

S0σi/n

2vthi

r2s
2

[1
2
− ln

(rs
rc

)]
and the relative ionization degree at the center of the column is

α =
n(0)

nn + n(0)
=

n(0)/nn

1 + n(0)/nn

The numerical application gives α ≲ 10−4.
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