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Exercise 1

a) The continuity equation for the density is:
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where S is the source term that ensures %—? =0 and —an? is the loss due

to the recombination process. Using the Fick’s law:
I'=-DVn (2)

We can express the global transport in the volume V as:
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The integral fav (Gauss’s theorem) is done over the boundary of the
considered volume and s is the outward-pointing unit vector normal to
the surface. Due to the slab geometry (figure 1), we only have one spatial
independent variable (z):
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therefore the integral along the directions y and z is a constant A (un-
known) equal to the surface through which the flux is present:
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The equation (3) can be rewritten as:
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and, using the trigonometric identity cos? ¢ = 1/2 [1 + 003(25)]
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b) The value of the density 1y necessary to have a loss rate due to the diffusion
equal to that due to the recombination is:

™D 7-0.1 m?/s
al?  10-15 m3/s- (2 m)

When the density is bigger than 7ny the recombination process is the dom-
inant one.
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Figure 1: Density profile for a slab geometry

C) To estimate the confinement time 7, we can use the following relation:
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Exercise 2

a)

b)

The process can be described as an ambipolar diffusion process, with dif-
fusion coefficient )
D, ~ 2D, — 2 thi (13)
Vi/n
where v;/, = 1,0, /,0¢n: is the frequency of ion/neutral collisions. There-
fore we have oor
D, ~ 22—t (14)
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The continuity equation describing this process writes as
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Therefore, since the system has cylindrical symmetry, with only a radial
dependence (9/00 = 0/0z = 0), the diffusion equation reads, in stationary
conditions, as
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where S(r) = Sy for r < rg and S(r) = 0 for r > r,. The diffusion
coefficient is assumed to be constant, D(r) = D,. We first solve for the
density in the source region. Integrating this expression from r =0 to r,
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and imposing the regularity condition T?Tﬂr:o =0, we find
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where n(0) is unknown for the moment. Now we solve for the density in
the outer region,
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where C' = rs% . Integrating this expression from r = r5 to r, we get
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Imposing the boundary condition n(r.) = 0 and the matching conditions
at r =rg,
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C) At r = 0 we have
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and the relative ionization degree at the center of the column is

n©) _ n(0)/n,
n, +n(0)  1+n(0)/n,

The numerical application gives a < 1074,



