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Exercise 1

The definition of a maxellian distribution of a population of particles o with

velocity ¥ is:
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Note that the distribution function depends on the vector ¢; therefore, in the
evaluation of the average, it’s necessary to include the direction of the velocity

¥. Using the definition of the thermal velocity vy o = 4/ Ta  we can derive the
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following expression for the maxwellian distribution f, as a function of vy, :
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Definition of the n'* moment of a variable z for distribution function f(z):
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Using this definition, it’s possible to write the integral for the average value

2.
of vz:
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where the following solution for the integrals has been used (see Appendix A
for the cases n=0 and n=1):
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Finally, we can write the root—mean—square (RMS) velocity:
(V2) = Viha = (v2) = Veh.a (3)

We can use this result to estimate <172> Since:
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and v, vy, v, are independent variables, we have:
(v?) = (uz + vy +02) = (v7) + (o) + (v2) = 3(v7) = Bvjha

and thus:
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To estimate the averaged value of |0| (first momentum of the velocity), it’s
better to solve the integral using spherical coordinates. For the integration of
the volume element of the velocity dv we have:
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SO we can write:
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Using the new variable defined as x = 5
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The integral (4) can be rewritten as:
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solving it by parts:
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and finally,



Exercise 2

a) The number of electrons injected in the tube per unit time is:

_ electric current 1.0 A
O~ electron charge  1.6-10-19 C

=6.24-10%s7!

The quantity Fj corresponds to a flux n.v.S, where S is the section of
the electron beam.

Collisions between electrons and neutrals are inelastic. The energy lost
by a colliding electron is such that after the collision it has insufficient
energy to ionize further neutrals. Hence, the total rate of ionization in the
tube is equal to the number of electrons lost from the beam between its
entrance and exit of the tube. We therefore need to calculate the decay
of the electron flux F(z) along the tube.

In the steady state assumed here, the electron flux F(z+dx) at the position
x + dz along the beam differs from the electron flux F(z) at position z
due to the fact that a fraction f, of the electrons are lost due to ionization
between x and x + dx:

F(e +dr) = F(z) — fpF(z) ()

where

(target density) x (volume) x (cross section of a single target)  n,Sdroio,

I = beam area o S
(6)

which we note is independent of S. We thus find that
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the solution is:




The quantity Amgp = (NnGion) "t is the mean free path. The total number
of ions per second produced in the tube is given by the difference between
the incoming and outgoing electron flux:
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To have a numerical solution it’s necessary to estimate the neutral particle
density, n,. We have that n,, = % = %, where N, is the total number
of atoms equal to the number of moles n times the Avogadro’s number A.

To estimate n, it’s possible to use the ideal gas law pV = nRT — n = %.

The following expression can then be derived:
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Given that 1 Pa = 7.501 x 103 Torr, then:

1073 .6.02 x 1023

— ~ 3.3 %10 m3.
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It’s possible now to derive the mean free path:
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Alternative solution using collision frequency:

The ionization frequency (per electron) is given by v;on = Ny Gionve. This
means that the ionization source (=ionization per second and per m?) is,
locally, given by Sion = Vion - e = NnTionVeNle

Now, we need to integrate this over the entire beam volume, taking into
account that the density of beam electrons, n.(x), is decreasing along the
way:

dN
Tonizations/sec = — = NpGionVene(z)dV
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Let’s now show that with this, we will find the same result as we did with
the approach above. We use dV = S x dx (S is the beam cross-section).
Then:

dN l l
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where F(z) = vene(r)S = Fyexp (fAIf ) is the flux of beam electrons
mfp

along x, as calculated above.
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this is consistent with the result found before.

b) In the previous derivation, we assumed that the neutral density is constant.
We need to verify this assumption considering the number of neutrals
inside the tube!: how long could we maintain the discharge for?

The total number of neutrals is:
N,, = n,, - volume chambre = 3.3 x 10'? . 27 ~ 2 x 10%°

thus we can maintain the discharge for about:

N, 1021 _
Tdischarge — aN = m ~ 67 s =~ 1 minute
dt

The assumption is therefore valid for t < 1 minute.

IWe consider the total volume of the vacuum tube (not only the volume of the beam)
because the neutrals are reaching an uniform distribution quickly (accordingly, we can suppose
to have the same n, along x)



Exercise 3

a) The definition of relative degree of ionization is

b)

c)

Te

Ne + NAr

where na, = Na,/V is the density of neutral Argon atoms and V' is the
volume of the vacuum chamber.
To evaluate n 4, we can use the ideal gas law:

PAr = NAr kBTAT

where kg = R/A is the Boltzmann constant and T4, = 300 K (room
temperature). This gives

nar~3.2-108% m3

The degree of ionization with n, = 1016 m=3 is:

n 1016
= ¢ = ~3-1073
T e +na.  1016+432.1018
—_————
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The electron-neutral collision frequency is

Ven = NArOionUrel

where v,.¢; is the relative velocity between electrons and neutrals and
Tion = 1037a? is the collision cross-section. Since m. < ma, and T, > Ty
we can assume Uy.e; = Ue.

In general, v, is a function of the electron velocity and, implicitly, 0, =
Oion(Ve). In our problem we consider ¢, constant and the mean velocity

(see exercise 1)
8
ve = (v) =\ — Vtne

NB: v, could also be chosen equal to vipe.
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where vipe =

Numerical result:

/8 [T,
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Can we consider this gas a plasma?



e The Debye length is:

[eoTe | T.leV] [ 3
Ap = ~ 74304 | ————— = 74304/ —= = 0.13
b e2n, ne [m™3] 1016 .

Therefore it’s necessary to have a plasma size L, > 0.13 mm.

e Np = %77)\3,3116 ~ 9.2-10* > 1, so the condition of the plasma pa-
rameter g = N 51 < 1 is verified.

e To see dynamic collective effects in a plasma (oscillations at the fre-
quency wy), we need to have w, much bigger than the collision fre-
quency:

2
Wy = |~ 187\/ne [m 2] = 187v/1016 m—3 = 5.7 - 10° rad/s
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To compare w, with v., we need to convert it in s

o= ‘2"4’ ~0.9-10° s > 1, =3.3-107 57!
iy

We can therefore consider this gas as a plasma.

Appendix A : Integration tips

Changing coordinates:
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Derivative:




Using iterative properties:

The Gamma function:
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