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Exercise 1

The definition of a maxellian distribution of a population of particles α with
velocity v⃗ is:

fα(v⃗) =

(
mα

2πTα

)3/2

exp

(
− mα

2Tα
v⃗2
)

Note that the distribution function depends on the vector v⃗; therefore, in the
evaluation of the average, it’s necessary to include the direction of the velocity

v⃗. Using the definition of the thermal velocity vth,α =
√

Tα

mα
, we can derive the

following expression for the maxwellian distribution fα as a function of vth,α:

fα =
1

(2π)3/2
1

v3th,α
exp

(
− v⃗2

2 v2th,α

)

Definition of the nth moment of a variable x for distribution function f(x):

⟨xn⟩ =
∫ +∞

−∞
xnf(x)dx

Using this definition, it’s possible to write the integral for the average value
of v2x:

〈
v2x
〉
=

1

(2π)3/2
1

v3th,α

∫ +∞

−∞
v2x e

−
v2
x+v2

y+v2
z

2 v2
th,α dvx dvy dvz =

=
1

(2π)3/2
1

v3th,α

∫ +∞

−∞
v2x e

− v2
x

2 v2
th,α dvx︸ ︷︷ ︸√

2π v3th,α

∫ +∞

−∞
e
−

v2
y

2 v2
th,α dvy︸ ︷︷ ︸√

2π vth,α

∫ +∞

−∞
e
− v2

z
2 v2

th,α dvz︸ ︷︷ ︸√
2π vth,α

where the following solution for the integrals has been used (see Appendix A
for the cases n=0 and n=1):

I(a) =

∫ +∞

−∞
e−ax2

dx =

√
π

a
a > 0 (1)

In(a) =

∫ +∞

−∞
x2ne−ax2

dx =
1 · 3 · 5 · · · (2n− 1)

2n

√
π

a2n+1
a > 0, n ∈ N ∪ {0}

(2)

1



Finally, we can write the root–mean–square (RMS) velocity:〈
v2x
〉
= v2th,α ⇒

√
⟨v2x⟩ = vth,α (3)

We can use this result to estimate
〈
v⃗2
〉
. Since:

v⃗2 = v2x + v2y + v2z

and vx, vy, vz are independent variables, we have:

〈
v2
〉
=
〈
v2x + v2y + v2z

〉
=
〈
v2x
〉
+
〈
v2y
〉
+
〈
v2z
〉
= 3

〈
v2x
〉
= 3 v2th,α

and thus: √
⟨v2⟩ =

√
3 vth,α

To estimate the averaged value of |v⃗| (first momentum of the velocity), it’s
better to solve the integral using spherical coordinates. For the integration of
the volume element of the velocity d3v we have:∫ +∞

−∞
d3v ⇒

∫ π

0

sin θ dθ

∫ 2π

0

dϕ︸ ︷︷ ︸
4π

∫ +∞

0

v2dv

so we can write:

⟨|v⃗|⟩ = 4π

∫ +∞

0

vfαv
2dv = 4π

1

(2π)3/2
1

v3th,α

∫ +∞

0

v e
− v2

2 v2
th,α v2dv (4)

Using the new variable defined as x = v2

2 v2
th,α

, we have:

x =
v2

2 v2th,α
⇒ v2 = 2 v2th,α x

dx =
v

v2th,α
dv ⇒ v dv = v2th,αdx

The integral (4) can be rewritten as:

⟨|v⃗|⟩ = 4π
1

(2π)3/2
1

v3th,α
2 v4th,α

∫ +∞

0

x e−xdx =
4√
2π

vth,α

∫ +∞

0

x e−xdx

solving it by parts:∫ +∞

0

x e−xdx = −x e−x
∣∣∞
0

+

∫ +∞

0

e−xdx = 0− e−x
∣∣∞
0

= 1

and finally,

⟨|v⃗|⟩ =
√

8

π
vth,α
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Exercise 2

a) The number of electrons injected in the tube per unit time is:

F0 =
electric current

electron charge
=

1.0 A

1.6 · 10−19 C
= 6.24 · 1018s−1

The quantity F0 corresponds to a flux neveS, where S is the section of
the electron beam.

Collisions between electrons and neutrals are inelastic. The energy lost
by a colliding electron is such that after the collision it has insufficient
energy to ionize further neutrals. Hence, the total rate of ionization in the
tube is equal to the number of electrons lost from the beam between its
entrance and exit of the tube. We therefore need to calculate the decay
of the electron flux F (x) along the tube.

In the steady state assumed here, the electron flux F (x+dx) at the position
x + dx along the beam differs from the electron flux F (x) at position x
due to the fact that a fraction fp of the electrons are lost due to ionization
between x and x+ dx:

F (x+ dx) = F (x)− fpF (x) (5)

where

fp =
(target density) x (volume) x (cross section of a single target)

beam area
=

nnSdxσion

S
(6)

which we note is independent of S. We thus find that

dF = F (x+ dx)− F (x) = −fpF (x) = −nnσiondxF (7)

beam

x+dx

x

F(x) F(x+dx)

S Sσ
i

dF

dx
= −nnσionF = − F

λmfp
⇒ dF

F
= − dx

λmfp

the solution is:

F (x) = F0 exp

(
− x

λmfp

)
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The quantity λmfp = (nnσion)
−1 is the mean free path. The total number

of ions per second produced in the tube is given by the difference between
the incoming and outgoing electron flux:

dN

dt
= Fin − Fout = F0 − F (x = l) = F0

[
1− exp

(
− l

λmfp

)]
To have a numerical solution it’s necessary to estimate the neutral particle
density, nn. We have that nn = Nn

V = nA
V , where Nn is the total number

of atoms equal to the number of moles n times the Avogadro’s number A.
To estimate n, it’s possible to use the ideal gas law pV = nRT → n = pV

RT .

The following expression can then be derived:

nn =
P[Pa]A[mol−1]

R[J·K−1mol−1]T[K]

Given that 1 Pa = 7.501× 10−3 Torr, then:

nn =
10−3 · 6.02× 1023

8.31 · 300 · 7.501× 10−3
≃ 3.3× 1019 m−3.

It’s possible now to derive the mean free path:

λmfp =
1

nnσion
=

1

3.3× 1019 m−3 · 10−20 m2
≈ 3 m

dN

dt
= 6.24× 1018

[
1− exp

(
−2

3

)]
= 3× 1018 ions · s−1

——————————————————————————–

Alternative solution using collision frequency:

The ionization frequency (per electron) is given by νion = nnσionve. This
means that the ionization source (=ionization per second and per m3) is,
locally, given by Sion = νion · ne = nnσionvene

Now, we need to integrate this over the entire beam volume, taking into
account that the density of beam electrons, ne(x), is decreasing along the
way:

Ionizations/sec =
dN

dt
=

∫
Vbeam

nnσionvene(x)dV

Let’s now show that with this, we will find the same result as we did with
the approach above. We use dV = S ∗ dx (S is the beam cross-section).
Then:

dN

dt
=

∫ l

0

nnσionvene(x)Sdx =

∫ l

0

nnσionF (x)dx,
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where F (x) = vene(x)S = F0 exp
(
− x

λmfp

)
is the flux of beam electrons

along x, as calculated above.

⇒ dN

dt
= nnσionF0

∫ l

0

exp

(
− x

λmfp

)
dx = nnσionλmfpF0

[
1− exp

(
− l

λmfp

)]
= F0

[
1− exp

(
− l

λmfp

)]
, we used: nnσionλmfp = 1 (8)

this is consistent with the result found before.

b) In the previous derivation, we assumed that the neutral density is constant.
We need to verify this assumption considering the number of neutrals
inside the tube1: how long could we maintain the discharge for?

The total number of neutrals is:

Nn = nn · volume chambre = 3.3× 1019 · 2π ≈ 2× 1020

thus we can maintain the discharge for about:

τdischarge =
Nn

dN
dt

=
1021

6× 1018
≈ 67 s ≈ 1 minute

The assumption is therefore valid for t < 1 minute.

1We consider the total volume of the vacuum tube (not only the volume of the beam)
because the neutrals are reaching an uniform distribution quickly (accordingly, we can suppose
to have the same nn along x)
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Exercise 3

a) The definition of relative degree of ionization is

α =
ne

ne + nAr

where nAr = NAr/V is the density of neutral Argon atoms and V is the
volume of the vacuum chamber.
To evaluate nAr we can use the ideal gas law:

pAr = nArkBTAr

where kB = R/A is the Boltzmann constant and TAr = 300 K (room
temperature). This gives

nAr ≃ 3.2 · 1018 m−3

The degree of ionization with ne = 1016 m−3 is:

α =
ne

ne + nAr︸ ︷︷ ︸
≈ nAr

=
1016

1016 + 3.2 · 1018
≈ 3 · 10−3

b) The electron-neutral collision frequency is

νen = nArσionvrel

where vrel is the relative velocity between electrons and neutrals and
σion = 103πa20 is the collision cross-section. Since me ≪ mAr and Te ≫ T0

we can assume vrel ≃ ve.

In general, νen is a function of the electron velocity and, implicitly, σion =
σion(ve). In our problem we consider σion constant and the mean velocity
(see exercise 1)

ve = ⟨v⟩ =
√

8

π
vthe

where vthe =
√

Te

me
.

NB: ve could also be chosen equal to vthe.

Numerical result:

νen = 3.2 · 1018 m−3 103π (5.29 · 10−11)2︸ ︷︷ ︸
a20

m2

√
8

π

√
Te

me

m

s
≈ 3.3 · 107 s−1

c) Can we consider this gas a plasma?
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• The Debye length is:

λD =

√
ε0Te

e2ne
≈ 7430

√
Te[eV]

ne [m−3]
= 7430

√
3

1016
= 0.13 mm

Therefore it’s necessary to have a plasma size Lp ≫ 0.13 mm.

• ND = 4
3πλ

3
Dne ≈ 9.2 · 104 ≫ 1, so the condition of the plasma pa-

rameter g = N−1
D ≪ 1 is verified.

• To see dynamic collective effects in a plasma (oscillations at the fre-
quency ωp), we need to have ωp much bigger than the collision fre-
quency:

ωp =

√
e2ne

meε0
≈ 18π

√
ne [m−3] = 18π

√
1016 m−3 = 5.7 · 109 rad/s

To compare ωp with νen we need to convert it in s−1:

fp =
ωp

2π
≈ 0.9 · 109 s−1 > νen = 3.3 · 107 s−1

We can therefore consider this gas as a plasma.

Appendix A : Integration tips

Changing coordinates:

(∫ +∞

−∞
e−x2

dx

)2

=

∫ +∞

−∞
dx

∫ +∞

−∞
dy e−(x2+y2) = 2π

∫ +∞

0

r dr e−r2 =

= 2π
1

2

∫ +∞

0

dα e−α︸ ︷︷ ︸
1

= π

⇒
∫ +∞

−∞
e−x2

dx =
√
π

Derivative:

∫ +∞

−∞
x2e−ax2

dx =

∫ +∞

−∞
dx

∂

∂(−a)
e−ax2

=

=
∂

∂(−a)

∫ +∞

−∞
dx e−ax2

=
∂

∂(−a)

√
π

a
= −

√
π

∂

∂(a)
a−1/2︸ ︷︷ ︸

−1

2
a−3/2

=

√
π

2
a−3/2
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Using iterative properties:

The Gamma function:

Γ(x) :=

∫ +∞

0

yx−1e−ydy

Properties:  Γ(x+ 1) = xΓ(x)
Γ(1) = 1

Γ(1/2) =
√
π

(9)

∫ +∞

−∞
x2e−ax2

dx = 2

∫ +∞

0

x2e−ax2

dx =

∣∣∣∣∣∣
y = ax2

dy = 2ax dx
→ dx = 1

2
√
a
dy y−1/2

∣∣∣∣∣∣
⇒ = 2

∫ +∞

0

y

a
e−y

(
dy y−1/2 1

2
√
a

)
= a−3/2

∫ +∞

0

dy y1/2e−y =

= a−3/2

∫ +∞

0

dy y3/2−1e−y = a−3/2 Γ

(
3

2

)
︸ ︷︷ ︸

1

2
Γ

(
1

2

)
=

√
π

2

=

√
π

2
a−3/2
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