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Exercise 1

The dispersion relations of waves in a magnetized plasma have been studied
in the lectures. Using those results for a circular polarized wave ! with k =
(0,0, k.) and magnetic field By = Byé., we find the following dispersion relation:

N2 =¢p =€ + €. (1)

The expressions for €; and ez can be found in eq.(9.22) and eq.(9.23) of
lecture 13. In the case of parallel propagation (k, = 0), the argument of the
Bessel function vanishes, therefore:

Jn(o) = 5n,0- (2)

Ounly the terms n = 0 are present. The derivatives of Bessel functions J), (a)
and the terms 2.J,,(a) in the tensor T, can be rewritten as:

Da@) = U@+ I (a)l,
T@) = 5 (@)~ Jups(a)

Therefore, the tensor T, is:
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Using the same notation as in lecture 6, we have:
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1We consider only right-hand circular polarization.
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The term €3 is related to longitudinal waves. The other two terms describe
transverse waves and they can be rewritten as:
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where the following definition has been used:
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Our plasma is characterized by a Dirac delta distribution function:
fa0(v) =na,od(v) (10)



Solution of the integral I
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therefore the integral 11+ does not give any contribution to the dispersion re-
lation.

Solution of the integral I3
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Dispersion relation
From the previous results, we find:
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and finally:
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that is the same relation that we have found from a fluid model with 7" = 0
(the Dirac delta distribution function can describe a particle population with
no thermal velocity, therefore with T' = 0).



Exercise 2

Simple CMA diagram for X and O mode, perpendicular injection
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Figure 1: Clemmow-Mullaly-Allis diagram for X and O mode. Wave trajectories
are shown for 1%t and 2"¢ harmonic injection and for different core plasma
densities. Note that for low field side X1 injection the wave first encounters a
cutoff. X2 may encounter a cutoff or resonance, depending on the density. O
mode has a higher density limit but will eventually be cut off at the plasma
frequency.

a.) The X-mode cutoffs and resonances in terms of X, and Y are

e Cyclotron resonances Y = 1/n?
e UHresonance: 1=X+Y =Y =1-X

wi-wivo Q2 2
o Cutoff: (—z2)'-s=0—=(1-X)’=Y

w

b.) Consider the case n = 1 (first harmonic heating). Initially, the wave is
outside the plasma so the density is zero — X = 0. The field at the edge
is lower than at the center so Q. < Q.9 — Y < 1. As the wave propagates
from low field side to high field side, the magnetic field increases as B ~
1/r. At the same time, the density increases (X increases). At the plasma
center the density is highest and B = By — Q. = Q.0 — Y = 1). At the
high field side the density is again zero (X = 0) and the field is higher
than at the center, so Y > 1. For nth harmionic heating the picture is
exactly the same but the values of Y are centered around 1/n?.

For first harmonic X-mode heating a wave launched from the LFS (B < By
so it starts below the resonance in the CMA diagram) first encounters the
cutoff. It will therefore be reflected. However for 2nd harmonic heating



and above it is possible for the wave to encounter the resonance first,
providing the density is not too high. If it were possible to launch from
the High Field Side (HFS), X1 heating would be possible as well.

O-mode cutoffs and resonances in terms of X and Y:

e Cyclotron resonances Y = 1/n?
o Cutoff: X =1

O mode has fewer restrictions in terms of cutoff, the only cutoff being the
plasma frequency which depends only on the density and is in any case at
higher density than the X mode cutoff.

Based on the magnetic fields the resonances are ITER:170 GHz, TCV:41
GHz. This rules out X2 heating on ITER because such frequencies are
above the reach of present gyrotron technology. Indeed, ITER will use
> 20 MW of EC heating in the first harmonic O mode (O1). 170 GHz gy-
rotron sources capable of continuously delivering 1 MW are being studied
and developed at SPC-EPFL.

TCV on the other hand can in principle use X2 heating. In practice it
uses both X2 (3 MW launched from the low field side) and X3 (1.5 MW
launched from the top). The advantage of X3 is that higher density plumes
can be heated than with X2.



