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Exercise 1

The dispersion relations of waves in a magnetized plasma have been studied
in the lectures. Using those results for a circular polarized wave 1 with k =
(0, 0, kz) and magnetic fieldB0 = B0êz, we find the following dispersion relation:

N2 = ϵR = ϵ1 + ϵ2. (1)

The expressions for ϵ1 and ϵ2 can be found in eq.(9.22) and eq.(9.23) of
lecture 13. In the case of parallel propagation (ky = 0), the argument of the
Bessel function vanishes, therefore:

Jn(0) = δn,0. (2)

Only the terms n = 0 are present. The derivatives of Bessel functions J ′
n(a)

and the terms n
aJn(a) in the tensor Tα can be rewritten as:

n

a
Jn(a) =

1

2
[Jn−1(a) + Jn+1(a)] ,

J ′
n(a) =

1

2
[Jn−1(a)− Jn+1(a)]

Therefore, the tensor Tα is:

Tα =


v2
⊥
4

[
δn,1 + δn,−1

]
i
v2
⊥
4

[
δn,1 − δn,−1

]
0

−i
v2
⊥
4

[
δn,1 − δn,−1

] v2
⊥
4

[
δn,1 + δn,−1

]
0

0 0 v2∥δn,0

 (3)

Using the same notation as in lecture 6, we have:

ϵ =

 ϵ1 −iϵ2 0
iϵ2 ϵ1 0
0 0 ϵ3

 (4)

1We consider only right-hand circular polarization.
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where:

ϵ1 = 1−
∑
α

ω2
p,α

ω2

1 +

∫
d3v

v2⊥
4nα0

kz
∂fα0

∂v∥
+ Ωα

v⊥

∂fα0

∂v⊥

kzv∥ − ω +Ωα
+

kz
∂fα0

∂v∥
− Ωα

v⊥

∂fα0

∂v⊥

kzv∥ − ω − Ωα

(5)
ϵ2 =

∑
α

ω2
p,α

ω2

∫
d3v

v2⊥
4nα0

kz
∂fα0

∂v∥
+ Ωα

v⊥

∂fα0

∂v⊥

kzv∥ − ω +Ωα
−

kz
∂fα0

∂v∥
− Ωα

v⊥

∂fα0

∂v⊥

kzv∥ − ω − Ωα

 (6)

ϵ3 = 1−
∑
α

ω2
p,α

ω2

1 +

∫
d3v

v2∥

nα0

kz
∂fα0

∂v∥

kzv∥ − ω

 . (7)

The term ϵ3 is related to longitudinal waves. The other two terms describe
transverse waves and they can be rewritten as:

ϵ1 = 1−
∑
α

ω2
p,α

ω2

[
1 + I+1 + I−1 + I+2 − I−2

]
(8)

ϵ2 =
∑
α

ω2
p,α

ω2

[
I+1 − I−1 + I+2 + I−2

]
(9)

where the following definition has been used:

I±1 =

∫
d3v

v2⊥
4nα,0

 kz
∂fα,0

∂v∥

kzv∥ − ω ± Ωα


I±2 =

∫
d3v

v⊥
4nα,0

[
Ωα

∂fα,0

∂v⊥

kzv∥ − ω ± Ωα

]

Our plasma is characterized by a Dirac delta distribution function:

fα,0(v) = nα,0 δ(v) (10)
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Solution of the integral I±1

I±1 =

∫
d3v

v2⊥
4nα,0

 kz
∂fα,0

∂v∥

kzv∥ − ω ± Ωα


=

kz
4nα,0

∫
dv⊥2πv

3
⊥

∫
dv∥

∂fα,0

∂v∥

kzv∥ − ω ± Ωα

=
kz

4nα,0

∫
dv⊥2πv

3
⊥

 fα,0
kzv∥ − ω ± Ωα

∣∣∣∣+∞

−∞︸ ︷︷ ︸
=0

+

∫
dv∥

kzfα,0
(kzv∥ − ω ± Ωα)2


=

k2z
4nα,0

∫
d3v

v2⊥fα,0
(kzv∥ − ω ± Ωα)2

=
k2z
4

∫
d3v

v2⊥δ(v)

(kzv∥ − ω ± Ωα)2

= 0 (11)

therefore the integral I1± does not give any contribution to the dispersion re-
lation.

Solution of the integral I±2

I±2 =
Ωα

4nα,0

∫
d3v v⊥

[
∂fα,0

∂v⊥

kzv∥ − ω ± Ωα

]

=
Ωα

4nα,0

[∫
dv∥

kzv∥ − ω ± Ωα

∫
dv⊥2πv

2
⊥
∂fα,0
∂v⊥

]

=
Ωα

4nα,0

∫ dv∥

kzv∥ − ω ± Ωα

v2⊥fα,0
∣∣+∞
0︸ ︷︷ ︸

=0

−2

∫
dv⊥2πv⊥fα,0




= − Ωα

2nα,0

∫
d3v

fα,0
kzv∥ − ω ± Ωα

= −Ωα

2

∫
d3v

δ(v)

kzv∥ − ω ± Ωα
= − Ωα

2(−ω ± Ωα)

∫
d3v δ(v∥ = 0, v⊥ = 0)

=
Ωα/2

ω ∓ Ωα
(12)

Dispersion relation

From the previous results, we find:

ϵ1 = 1−
∑
α

ω2
p,α

ω2

[
1 + I+2 − I−2

]
and ϵ2 =

∑
α

ω2
p,α

ω2

[
I+2 + I−2

]
(13)
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and finally:

N2 = ϵ1 + ϵ2 = 1−
∑
α

ω2
p,α

ω2

[
1− 2I−2

]
= 1−

∑
α

ω2
p,α

ω2

[
1− Ωα

ω +Ωα

]
= 1−

∑
α

ω2
p,α

ω2

ω

ω +Ωα

= 1−
∑
α

ω2
p,α

ω(ω +Ωα)
, (14)

that is the same relation that we have found from a fluid model with T = 0
(the Dirac delta distribution function can describe a particle population with
no thermal velocity, therefore with T = 0).
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Exercise 2
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Figure 1: Clemmow-Mullaly-Allis diagram for X and O mode. Wave trajectories
are shown for 1st and 2nd harmonic injection and for different core plasma
densities. Note that for low field side X1 injection the wave first encounters a
cutoff. X2 may encounter a cutoff or resonance, depending on the density. O
mode has a higher density limit but will eventually be cut off at the plasma
frequency.

a.) The X-mode cutoffs and resonances in terms of X, and Y are

• Cyclotron resonances Y = 1/n2

• UH resonance: 1 = X + Y → Y = 1−X

• Cutoff: (
ω2−ω2

p

ω2 )2 − Ω2
e

ω2 = 0 → (1−X)2 = Y

b.) Consider the case n = 1 (first harmonic heating). Initially, the wave is
outside the plasma so the density is zero → X = 0. The field at the edge
is lower than at the center so Ωe < Ωe0 → Y < 1. As the wave propagates
from low field side to high field side, the magnetic field increases as B ∼
1/r. At the same time, the density increases (X increases). At the plasma
center the density is highest and B = B0 → Ωe = Ωe0 → Y = 1). At the
high field side the density is again zero (X = 0) and the field is higher
than at the center, so Y > 1. For nth harmionic heating the picture is
exactly the same but the values of Y are centered around 1/n2.

For first harmonic X-mode heating a wave launched from the LFS (B < B0

so it starts below the resonance in the CMA diagram) first encounters the
cutoff. It will therefore be reflected. However for 2nd harmonic heating
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and above it is possible for the wave to encounter the resonance first,
providing the density is not too high. If it were possible to launch from
the High Field Side (HFS), X1 heating would be possible as well.

c.) O-mode cutoffs and resonances in terms of X and Y :

• Cyclotron resonances Y = 1/n2

• Cutoff: X = 1

O mode has fewer restrictions in terms of cutoff, the only cutoff being the
plasma frequency which depends only on the density and is in any case at
higher density than the X mode cutoff.

d.) Based on the magnetic fields the resonances are ITER:170 GHz, TCV:41
GHz. This rules out X2 heating on ITER because such frequencies are
above the reach of present gyrotron technology. Indeed, ITER will use
> 20 MW of EC heating in the first harmonic O mode (O1). 170 GHz gy-
rotron sources capable of continuously delivering 1 MW are being studied
and developed at SPC-EPFL.

TCV on the other hand can in principle use X2 heating. In practice it
uses both X2 (3 MW launched from the low field side) and X3 (1.5 MW
launched from the top). The advantage of X3 is that higher density plumes
can be heated than with X2.
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