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Figure 1: Plot of the distribution functions of ions and electrons.

a) We expect to have unstable waves where we have small ion damping and
positive slope in the electron distribution function (Figure 1). Among
the possible electrostatic waves that can exist in such plasma, only ion-
acoustic waves have a phase velocity that falls into this region (ω ≈ kcs).
Any wave with a phase velocity smaller than cs will be strongly damped
by the ion distribution function.

b) From Landau theory, the damping rate γ is given by:

γ = − ϵi(ωr)

∂ϵr/∂ωr

where we can identify ϵ(ω, k) = ϵr(ω, k) + iϵi(ω, k) and the terms ωr and
γ, that are respectively the real part and the imaginary part of frequency:

ω = ωr + iγ. (1)
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Real part of ϵ(ωr, k)

The real part of ϵ is given by:

ϵr(ωr, k) = 1 +
∑
α

e2

mαϵ0k
P.V.

∫ ∞

−∞

dF0,α

du

1

ωr − ku
du (2)

We can follow the solution of the ex. 2, series 11 and ex. 2, series 9.

For the ions, there are no differences in the solution:∫ ∞

−∞

dF0,i

du

1

ωr − ku
du ≈ −kni

ω2
r

(3)

For the electrons, we have (ωr/k ≪ vth,e):∫ ∞

−∞

dF0,e

du

1

ωr − ku
du ≈ −1

k

∫ ∞

−∞

dF0,e

du

du

u
(4)

where
dF0,e

du
= −u− vd

v2th,e
F0,e (5)

We obtain:

∫ ∞

−∞

dF0,e

du

1

ω − ku
du ≈ 1

kv2th,e

{∫ ∞

−∞
uF0,e

du

u
−
∫ ∞

−∞
vd F0,e

du

u

}
≈
∫ ∞

−∞
uF0,e

du

u
=

ne

kv2th,e
(6)

where, due to the symmetry of F0,e (assuming vd ≪ vth,e),
∫∞
−∞ vd F0,e

du
u ≈

0.

The real part of ϵ(ωr, k) is therefore given by:

ϵr(ωr, k) ≃ 1−
ω2
pi

ω2
r

+
ω2
pe

k2v2th,e
,

and the derivative of ϵr with respect to ωr is:

∂ϵr(ωr, k)

∂ωr
= 2

ω2
pi

ω3
r

(7)

Imaginary part of ϵ(ωr, k)

The imaginary part of ϵ is given by:

ϵi(ωr, k) = −π
∑
α

e2

mαε0k2
dF0,α

du

∣∣∣∣
u=ω/k

(8)

Following Ex. 1 of series 10, for ions we don’t have any difference:
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ϵionsi (ωr, k) =

√
π

2

cs
k2

ω2
pi

v3th,i
exp

(
− c2s
2 v2th,i

)
(9)

For electrons:

dF0,e

du
= −u− vd

v2th,e
F0,e (10)

where

F0,e =
n√

2πvth,e
exp

[
− (u− vd)

2

2v2th,e

]

By substituting the dispersion relation for the ions, u = ωr/k = cs, and
using the approximation cs ≪ vd, we obtain:

ϵelectronsi (ωr, k) = −
√

π

2

vd
k2

ω2
pe

v3th,e
exp

(
− v2d
2 v2th,e

)
. (11)

Finally, we can derive the total damping rate:

γ = γe+γi =

√
π

8

{
kvd

(
me

mi

)1/2

exp

[
− v2d
2v2th,e

]
− kcs

(
Te

Ti

)3/2

exp

[
− Te

2Ti

]}

where we have introduced explicitly the expressions for the thermal veloc-
ities, the sound speed and the plasma frequencies.

The electron contribution is destabilizing (γe > 0), while the ion contri-
bution is stabilizing (damping term γi < 0).

c) When Te ≫ Ti, the damping term from the ions contribution vanishes
(γi → 0), leading to an instability, γ > 0.

In the limit of Te ≫ Ti, since v2d/2v
2
th,e → 0:

γ ≈
√

π

8
kvd

(
me

mi

)1/2

Exercise 2

Consider two electron populations with maxwellian distributions 1:

fp(v) =
np√

2πvth,p
exp

(
− v2

2 v2th,p

)
and fb(v) =

nb√
2πvth,b

exp

(
− (v − V )2

2 v2th,b

)
(12)

where the population b has a drift velocity V , with V ≫ vth,b (Figure 2).

1Consider 1-dimensional problem.
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Figure 2: Distribution function of the two electron populations: (a) plasma and
(b) beam.

Stability criteria

Let’s define the total distribution function F = fp + fb (figure 3). As we
have seen during the lecture, the stability/instability of a perturbation with
phase velocity vϕ is given by the sign of the derivative of F at v = vϕ. When
dF/dv > 0 the growth rate γ ∝ dF/dv is positive, therefore the amplitude of
the initial perturbation will increase with time.
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Figure 3: Total distribution function F . Notice that the slope of F for v = vϕ
is related to the density ratio nb/np.

The critical value of the slope of F below which no instability can occur is
given by the condition (figure 4):

dF

dv

∣∣∣∣
v=vϕ

= 0 (13)

that corresponds to a critical density ratio ncrit.
b /np.
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Figure 4: Critical value of dF/dv, after that γ > 0.

From the derivative of the total distribution function F :

dF

dv
=

dfp
dv

+
dfb
dv

= − v

v2th,p
fp(v)−

v − V

v2th,b
fb(v) =

= − np v√
2πv3th,p

e
− v2

2 v2
th,p − ncrit.

b (v − V )√
2πv3th,b

e
− (v−V )2

2 v2
th,b (14)

Evaluation of the phase velocity vϕ

Suppose that the phase velocity corresponds to the value of v for which the
slope of fb(v) is maximum. Since in the case of a maxwellian function the slope
is maximum for vϕ ≡ vth, if we have a drift velocity we obtain2:

vϕ = V − vth,b (15)

To verify it:

dfb(v)

dv
= −v − V

v2th,b
fb(v) (16)

d2fb(v)

dv2
= − 1

v2th,b
fb(v) +

(v − V )2

v4th,b
fb(v) =

[
(v − V )2

v2th,b
− 1

]
fb(v)

v2th,b
(17)

The maximum of dfb/dv is given by the equation:

d2fb(v)

dv2
= 0 ⇔

[
(v − V )2

v2th,b
− 1

]
= 0 ⇒ v = V ± vth,b (18)

We can check in figure 2 that the solution v = V − vth,b corresponds the the
maximum of f ′

b and v = V + vth,b is the minimum3.

2The solution vϕ = V + vth,b is the minimum of dfb/dv.
3We can verify it from the sign of d3fb(v)/dv

3.
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Critical density value

Imposing now the condition in eq.(13), for v = vϕ = V − vth,b, we have:

dF

dv

∣∣∣
v=vϕ

= −np(V − vth,b)√
2πv3th,p

e
−

(V −vth,b)
2

2 v2
th,p +

ncrit.
b√

2πv2th,b
e−

1
2 = 0 (19)

Finally, with the condition V ≫ vth,b, we find:

np V√
2πv3th,p

e
− V 2

2 v2
th,p =

ncrit.
b√

2πv2th,b
e−

1
2 (20)

that gives a critical density ratio ncrit.
b /np of:

ncrit.
b

np
=

√
e
v2th,b
v3th,p

V e
− V 2

2 v2
th,p (21)

and, since v2th,b/v
2
th,p ≡ Tb/Tp,

ncrit.
b

np
=

√
e
Tb

Tp

V

vth,p
e
− V 2

2 v2
th,p (22)
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