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Exercise 1
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Figure 1: Plot of the distribution functions of ions and electrons.

a) We expect to have unstable waves where we have small ion damping and
positive slope in the electron distribution function (Figure 1). Among
the possible electrostatic waves that can exist in such plasma, only ion-
acoustic waves have a phase velocity that falls into this region (w =~ kcs).
Any wave with a phase velocity smaller than c; will be strongly damped
by the ion distribution function.

b) From Landau theory, the damping rate -~y is given by:
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where we can identify e(w, k) = €,(w, k) + i€;(w, k) and the terms w, and
v, that are respectively the real part and the imaginary part of frequency:

w = wy + 7. (1)



Real part of ¢(w,, k)

The real part of € is given by:
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We can follow the solution of the ex. 2, series 11 and ex. 2, series 9.

For the ions, there are no differences in the solution:
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For the electrons, we have (w,/k < vip.e):
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We obtain:
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where, due to the symmetry of Fy . (assuming vg < vip.e), ffo

0.
The real part of €(w,., k) is therefore given by:
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and the derivative of €, with respect to w, is:
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Imaginary part of e(w,, k)
The imaginary part of € is given by:
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Following Ex. 1 of series 10, for ions we don’t have any difference:
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For electrons:

= Fo.e (10)

where

By substituting the dispersion relation for the ions, u = w,/k = ¢, and
using the approximation ¢, < vg4, we obtain:
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Finally, we can derive the total damping rate:
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where we have introduced explicitly the expressions for the thermal veloc-
ities, the sound speed and the plasma frequencies.

The electron contribution is destabilizing (7. > 0), while the ion contri-
bution is stabilizing (damping term ~; < 0).

c) When T, > T;, the damping term from the ions contribution vanishes
(vi = 0), leading to an instability, v > 0.

In the limit of T, > T;, since v3/2vt2h7e — 0:
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Exercise 2

Consider two electron populations with maxwellian distributions *:
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where the population b has a drift velocity V, with V' > vy, , (Figure 2).

1Consider 1-dimensional problem.
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Figure 2: Distribution function of the two electron populations: (a) plasma and
(b) beam.

Stability criteria

Let’s define the total distribution function F' = f, + f, (figure 3). As we
have seen during the lecture, the stability/instability of a perturbation with
phase velocity v, is given by the sign of the derivative of F' at v = vy. When
dF/dv > 0 the growth rate v o< dF/dv is positive, therefore the amplitude of
the initial perturbation will increase with time.



Figure 3: Total distribution function F'. Notice that the slope of F' for v = vy
is related to the density ratio ny/n,.

The critical value of the slope of F' below which no instability can occur is
given by the condition (figure 4):
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that corresponds to a critical density ratio nlc)‘"it' /M.



Figure 4: Critical value of dF/dv, after that v > 0.

From the derivative of the total distribution function F':
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Evaluation of the phase velocity v,

Suppose that the phase velocity corresponds to the value of v for which the
slope of fj,(v) is maximum. Since in the case of a maxwellian function the slope
is maximum for vy = vy, if we have a drift velocity we obtain?:

Vp = V- Uth,b (15)
To verify it:
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The maximum of dfy,/dv is given by the equation:
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We can check in figure 2 that the solution v = V — vy, corresponds the the
maximum of fz; and v =V 4 vy, is the minimum?.

2The solution Vg =V + vy is the minimum of dfy,/dv.
3We can verify it from the sign of d3 fy(v)/dv3.



Critical density value

Imposing now the condition in eq.(13), for v = vy =V — vy, p, we have:
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Finally, with the condition V' > vy, 5, we find:

__vZ crit.
ny V R, ng

I — b
2V 27wfh’p RV 27”’:52}1,17

1
2

that gives a critical density ratio n§"* /n,, of:
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