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Exercise 1

a) For the electron plasma waves (Langmuir waves), we have |ω/k| ≫ vth,e.
Therefore we can find the dispersion relation neglecting the contribution
from the ion population. To calculate the damping rate of the wave:

γ = − ϵi(ωr)

∂ϵr/∂ωr
,

we need to evaluate the real part, ϵr(ωr), and the imaginary part, ϵi(ωr),
of ϵ(ωr, k): 

ϵr(ωr, k) = 1−
ω2
pe

nek2
P.V.

∫
du

dFe0

du

u− ωr

k

ϵi(ωr, k) = − π
ω2
pe

nek2
dFe0

du

∣∣∣∣∣
u=ωr

k

(1)

We have already solved the dispersion relation ϵr(ωr) = 0 for the Lang-
muir waves (section 8.2, lecture IX), keeping the first three orders of the
expansion in ku/ω:

ϵr(ωr) ≃ 1−
ω2
pe

ω2
r

{
1 + 3

k2v2th,e
ω2
r

}
= 0.

For ω2
r ∼ ω2

pe, we have found the solution ω2
r ≃ ω2

pe + 3 k2v2th,e.

To calculate the derivative ∂ϵr/∂ωr, we keep only the dominant term of
the expansion (zero-order):

∂ϵr
∂ωr

=
∂

ωr

{
1−

ω2
pe

ω2
r

}
= 2

ω2
pe

ω3
r

. (2)

Considering a Maxwellian distribution for the electrons:

Fe0 =
ne√

2πvth,e
exp

{(
− u2

2 v2th,e

)}
with v2th,e = Te/me, we obtain:

ϵi(ωr) =

√
π

2

ωrω
2
pe

k3v3th,e
exp

{
− ω2

r

2 k2v2th,e

}
. (3)
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The damping rate is therefore given by:

γ = −
√

π

8

ω4
r

k3v3th,e
exp

{
− ω2

r

2 k2v2th,e

}
. (4)

We need now to substitute the expression for ωr. Keeping only the dom-
inant term ω ≃ ωpe and considering the correction in the exponential
introduced by the third order term ω2

r ≃ ω2
pe + 3k2v2th,e

1, we find:

γ = −
√

π

8
e−3/2

ω4
pe

k3v3th,e
exp

{
−

ω2
pe

2 k2v2th,e

}
. (5)

b) Using the identity ωpe/vth,e ≡ λ−1
D , we can write:

γ = −
√

π

8
e−3/2 ωpe

(kλD)3
exp

{
− 1

2(kλD)2

}
. (6)

The important quantity is therefore the ratio between the Debye length
and the wave length. It’s easy to verify that γ → 0 if kλD → 0 and that
there is a strong damping when kλD ∼ 1. Imposing dγ/d(kλD) = 0, we
can find the condition necessary to have the maximum damping rate γmax,
that is kλD =

√
3/3.

c) From part b) we find that:

| γ
ωr

| ≃ | γ

ωpe
| = | −

√
π

8
e−3/2 1

(kλD)3
exp

{
− 1

2(kλD)2

}
| < |γmax

ωpe
| ≃ 0.16.

We thus indeed find that γ/ωr ≪ 1

Figure 1: Damping rate of a Langmuir wave: plot of the function f(x) =
γ

ωpe
=
√
π/8e−3/2 1

x3 exp
{(

− 1
2x2

)}
.

1The term 3 k2v2th,e gives a factor e−3/2 ≈ 0.2.
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Exercise 2

Considering the equation:

ϵ(ω, k) = 1 +
∑
α

e2

mαϵ0k

∫
L

dF0,α

du

1

ω − ku
du = 0 (7)

for a hydrogen neutral plasma (ne = ni = n0, Z = 1), with the approximation

kvth,i ≪ ω ≪ kvth,e Te ≫ Ti, (8)

it is possible to derive the dispersion relation for the ion-acoustic waves (serie
9, exercise 2).

From the Landau’s theory, the damping rate γ is given by:

γ ≡ − ϵi(ωr, k)

∂ϵr(ωr, k)/∂ωr
, (9)

where we can identify ϵ(ω, k) = ϵr(ω, k) + iϵi(ω, k) ≡ D(ω, k) (electrostatic
approximation) and the terms ωr and γ, that are respectively the real part and
the imaginary part of frequency ω:

ω = ωr + iγ. (10)

The eq.(9) is valid only if the absolute value of the damping rate is much smaller
then the real part of the frequency (|γ| ≪ |ωr|).

Real part of ϵ(ωr, k)

The real part of ϵ(ωr, k) is given by:

ϵr(ωr, k) = 1 +
∑
α

e2

mαϵ0k
P.V.

∫ ∞

−∞

dF0,α

du

1

ωr − ku
du (11)

Using directly the dispersion relation for the ion-acoustic waves, that we have
found for ω ≃ ωr in serie 9 exercise 2, we have:

ϵr(ωr, k) ≃ 1− e2ni

miε0

1

ω2
r

+
e2ne

meϵ0

1

k2v2th,e

= 1−
ω2
pi

ω2
r

+
ω2
pe

k2v2th,e
, (12)

that gives, assuming λ ≫ λD:

ωr

k
≃ cs ≡

√
Te

mi
, (13)

where cs is the ion-acoustic speed. The derivative of ϵr with respect to ωr is
therefore:

∂ϵr(ωr, k)

∂ωr
= 2

ω2
pi

ω3
r

(14)
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Imaginary part of ϵ(ωr, k)

The imaginary part of ϵ is given by:

ϵi(ωr, k) = −π
∑
α

e2

mαε0k2
dF0,α

du

∣∣∣∣
u=ωr/k

. (15)

For a Maxwellian distribution function, we have:

dF0,α

du
= − u

v2th,α
F0,α, (16)

therefore

ϵi(ωr, k) =

√
π

2

e2n0ωr

ε0k3

exp
(
− ω2

r

2 k2v2
th,e

)
mev3th,e

+
exp

(
− ω2

r

2 k2v2
th,i

)
miv3th,i

 . (17)

Having ωr/k = cs ≪ vth,e, we find:

exp

(
− ω2

r

2 k2v2th,e

)
≃ 1. (18)

Introducing the definition of electron and ion plasma frequency:

ω2
p,e/i =

e2n0

ε0me/i
(19)

and with the substitution ωr/k = cs, we can rewrite ϵi as:

ϵi(ωr, k) =

√
π

2

cs
k2

[
ω2
pe

v3th,e
+

ω2
pi

v3th,i
exp

(
− c2s
2 v2th,i

)]
. (20)

Damping rate

From the results in the previous sections, eq.(14) and eq.(20), we can evaluate
the damping rate using eq.(9):

γ = −
√

π

8

[
ω2
pec

4
s

k2v3th,e

k3

ω2
pi

+
ω2
pic

4
s

k2v3th,i

k3

ω2
pi

exp

(
− c2s
2 v2th,i

)]
. (21)

A possible simplification of the expression for γ is obtained introducing explicitly
the thermal velocities and the sound speed. The result is:

γ = −
√

π

8
kcs

√
me

mi︸ ︷︷ ︸
γe

−
√

π

8
kcs

(
Te

Ti

)3/2

exp

(
− Te

2Ti

)
︸ ︷︷ ︸

γi

(22)
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