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Exercise 1

a) For the electron plasma waves (Langmuir waves), we have |w/k| > v c.
Therefore we can find the dispersion relation neglecting the contribution
from the ion population. To calculate the damping rate of the wave:
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we need to evaluate the real part, €.(w,), and the imaginary part, ¢;(w,),
of e(wy, k):
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We have already solved the dispersion relation €, (w,) = 0 for the Lang-
muir waves (section 8.2, lecture IX), keeping the first three orders of the
expansion in ku/w:
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For w? ~ w?

ve» we have found the solution w2 ~ wge +3k%7 .

To calculate the derivative ¢, /Ow,., we keep only the dominant term of
the expansion (zero-order):
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Considering a Maxwellian distribution for the electrons:
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with vfh,e =T./m., we obtain:

2 2
™ OJTOJpe Wy,
Ei(wr) = \/;kgv?’ €Xp {—M%tg}} . (3)




The damping rate is therefore given by:
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We need now to substitute the expression for w,. Keeping only the dom-

inant term w ~ wp. and considering the correction in the exponential

introduced by the third order term w;? ~ w7, + 3k*v, b, we find:
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b) Using the identity wpe/vin,e = )\Bl, we can write:
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The important quantity is therefore the ratio between the Debye length
and the wave length. It’s easy to verify that v — 0 if kAp — 0 and that
there is a strong damping when kAp ~ 1. Imposing dvy/d(kAp) = 0, we
can find the condition necessary to have the maximum damping rate yyax,
that is kAp = v/3/3.

¢) From part b) we find that:
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We thus indeed find that v/w, < 1
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Figure 1: Damping rate of a Langmuir wave: plot of the function f(z) =
L = 7r/8€_3/2ﬂ%3 exp{(—5) }-
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1The term 3k2vt2h . gives a factor e 3/2 % 0.2.



Exercise 2

Considering the equation:
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for a hydrogen neutral plasma (n. = n; = ng, Z = 1), with the approximation
kvin,i < w < kvge T. > Ti, (8)

it is possible to derive the dispersion relation for the ion-acoustic waves (serie
9, exercise 2).
From the Landau’s theory, the damping rate  is given by:
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where we can identify e(w,k) = €,(w,k) + i€;(w, k) = D(w,k) (electrostatic
approximation) and the terms w, and -, that are respectively the real part and
the imaginary part of frequency w:
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The eq.(9) is valid only if the absolute value of the damping rate is much smaller
then the real part of the frequency (|| < |wy|).
Real part of ¢(w,, k)
The real part of €(w,., k) is given by:
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Using directly the dispersion relation for the ion-acoustic waves, that we have
found for w ~ w, in serie 9 exercise 2, we have:
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that gives, assuming A > Ap:
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where ¢, is the ion-acoustic speed. The derivative of €, with respect to w, is

therefore: )
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Imaginary part of ¢(w,, k)

The imaginary part of € is given by:
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For a Maxwellian distribution function, we have:
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therefore
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Having w,/k = ¢; < vy e, we find:
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Introducing the definition of electron and ion plasma frequency:
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and with the substitution w,/k = ¢z, we can rewrite ¢; as:

2 2 2
7T c w Wi c
€i(wp, k) = — |+ Fexp | -5 . (20)
2k Uth e Uth, 205, ;

Damping rate

From the results in the previous sections, eq.(14) and eq.(20), we can evaluate
the damping rate using eq.(9):
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A possible simplification of the expression for « is obtained introducing explicitly
the thermal velocities and the sound speed. The result is:
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