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Exercise 1

Residue theorem

Suppose f is a function of a complex variable z in a domain bound by a circle
with radius C' centered at a. Suppose f is an analytical function everywhere
except at the point a. Therefore the function f has a pole at a and it can be
represented as a Laurent series:
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The coefficients of the series are given by:
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and, in particular, we have:
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If no poles are enclosed by the integration path, the integral vanishes. We
can evaluate the residue a_1 using the following expressions:

e First order pole:

a-y = lim(z —a)f(z) (1)
e k-th order pole:
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We can easily extend this approach to a function f(z) integrated along an
integration path I' enclosing different poles situated at the points a, b, ... :
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Lorentz distribution
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Figure 1: Integration path.

This function has two first order poles situated at v = ia and v = —ia. We want
to integrate it along the real axis, but we need to close somehow the integration
path to use the residue theorem. We decide to do it with a semi-circle with
radius r — inf, therefore the contribution to the integral is negligible (figure 1).
Only the pole at v = +ia contributes to the integral. We evaluate the residue
using the eq.(1):
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a) Using the residue theorem we can easily find the normalizing constant:
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b) The first moment of the distribution function is the mean velocity, that is
zero due to the symmetry of f(v):
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C) Conversely, the second order momentum of the distribution function, that
is the mean kinetic energy, diverges because:
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We can also see this by doing the actual integration
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Therefore the solution is not physical and the lorentz distribution can not
describe a real electron population.

Exercise 2

For the distribution function f = f(&,,t), the Viasov equation is:
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with @ = %(E + @ x B). We know that Z and ¥ are independent variables,

therefore:
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We can rewrite the Vlasov equation (8) as follows:
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The entropy is defined as:
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where the integrals are computed over the entire phase space.
We can now use the following mathematical property:

If g(y) = [ f(z,y) dx
then
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Applying this to our case:
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and
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Therefore,
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Using Gauss’s theorem we can now write:
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This surface integral ¥ is computed on the boundary of the phase space.
Supposing that f — 0 quickly when v, & and @ — oo, the integral vanishes.

Analogously, we have:
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Finally,
ds

the entropy is conserved in a plasma described by the Vlasov equation.



