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Exercise 1

In order to refresh your knowledge of the Laplace transform and complex
analysis, solve the equations of a series RLC' circuit using the Laplace transform
method. The capacitor has charge Qo and we close the circuit at t = 0 (see
figure below).

a.) Write, using the Kirchhoff law, the equation describing the temporal evo-
lution of the charge q.

b.) Find the Laplace transform of ¢(t), ¢(s), with the initial conditions ¢(t =
0) = Qo and I(t = 0) = 0. Suggestion: define R/L = 25; 1/(LC) = w3,
and consider only the case w? . — §2 > 0.

c.) Evaluate the temporal evolution of the charge ¢(t) by inverting Laplace
transform. Comment on the integration path in the complex plane s.

d.) Verify the initial conditions.
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Laplace transform of a function f(¢):
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Inverse Laplace transform:
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where R{po} > max(R{poles of f(s)})



Laplace transform of derivatives:
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Exercise 2

Using the general dispersion relation from the Viasov-Mazwell model:
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evaluate the dispersion relation of the ion-acoustic waves in the limit kvyp; <
w K kvipe, Te > T;, and assuming A ~ 1/k > Ap. Consider Fy, and Fp; as
maxwellian distribution functions.

Notice that in the case of waves with low frequency (e.g. the ion-acoustic
waves), both species have to be considered (electrons and ions).



