Plasma Physics I

Series 9 (November 14, 2024)

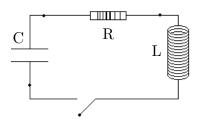
Prof. Christian Theiler

Swiss Plasma Center (SPC) École Polytechnique Fédérale de Lausanne (EPFL)

Exercise 1

In order to refresh your knowledge of the Laplace transform and complex analysis, solve the equations of a series RLC circuit using the Laplace transform method. The capacitor has charge Q_0 and we close the circuit at t=0 (see figure below).

- a.) Write, using the Kirchhoff law, the equation describing the temporal evolution of the charge q.
- b.) Find the Laplace transform of q(t), $\tilde{q}(s)$, with the initial conditions $q(t=0)=Q_0$ and I(t=0)=0. Suggestion: define $R/L=2\delta$; $1/(LC)=\omega_{LC}^2$, and consider only the case $\omega_{LC}^2-\delta^2>0$.
- c.) Evaluate the temporal evolution of the charge q(t) by inverting Laplace transform. Comment on the integration path in the complex plane s.
- d.) Verify the initial conditions.



Laplace transform of a function f(t):

$$L\{f(t)\} = \int_0^\infty f(t)e^{-st}dt = \tilde{f}(s)$$

Inverse Laplace transform:

$$f(t) = L^{-1}{\{\tilde{f}(s)\}} = \frac{1}{2\pi i} \int_{p_0 - i\infty}^{p_0 + i\infty} \tilde{f}(s)e^{st}ds$$

where $\Re\{p_0\} > \max(\Re\{\text{poles of } \tilde{f}(s)\})$

Laplace transform of derivatives:

$$\begin{split} \mathbf{L}\left\{\frac{df(t)}{dt}\right\} &= s\mathbf{L}\{f(t)\} - f(t=0) \\ \mathbf{L}\left\{\frac{d^2f(t)}{dt^2}\right\} &= s\mathbf{L}\left\{\frac{df(t)}{dt}\right\} - f'(t=0) = s^2\mathbf{L}\{f(t)\} - sf(t=0) - f'(t=0) \end{split}$$

Exercise 2

Using the general dispersion relation from the *Vlasov-Maxwell* model:

$$D(\omega, k) = 1 + \sum_{\alpha} \frac{e^2}{m_{\alpha} \epsilon_0 k} \int_{-\infty}^{+\infty} du \frac{dF_{0\alpha}}{du} \frac{1}{\omega - ku} = 0$$

evaluate the dispersion relation of the ion-acoustic waves in the limit $kv_{thi} \ll \omega \ll kv_{the}, T_e \gg T_i$, and assuming $\lambda \sim 1/k \gg \lambda_D$. Consider F_{0e} and F_{0i} as maxwellian distribution functions.

Notice that in the case of waves with low frequency (e.g. the ion-acoustic waves), both species have to be considered (electrons and ions).