
Plasma Physics I

Series 7 (October 31, 2024)

Prof. Christian Theiler

Swiss Plasma Center (SPC) École Polytechnique Fédérale de Lausanne (EPFL)

Exercise 1

Consider the situation displayed above. An electromagnetic wave propagating along the magnetic field B_0 crosses a portion of plasma. In the plasma, consider the dispersion relation of an electromagnetic wave in a cold uniform plasma:

$$N^{2} = \frac{k^{2}c^{2}}{\omega^{2}} = \frac{(\omega \mp \omega_{R})(\omega \pm \omega_{L})}{(\omega \pm \Omega_{i})(\omega \mp |\Omega_{e}|)} \approx 1 - \frac{\omega_{pe}^{2}/\omega^{2}}{1 \mp |\Omega_{e}|/\omega}; \quad (\omega \gg \Omega_{i})$$

The upper sign is related to the right-handed wave (R) and the lower sign to the left-handed wave (L).

a.) Show that the rotation (polarization) angle α , when the wave exits the plasma, is equal to half of the phase difference between the two waves. Find a relation for α as a function of the distance travelled, ω , Ω_e and ω_{pe} . Consider the limit:

$$\frac{\omega_{pe}^2/\omega^2}{1 \mp |\Omega_e|/\omega} \ll 1$$

b.) The Faraday rotation of a micro-wave beam ($\lambda = 8\,\mathrm{mm}$) in a uniform plasma with a magnetic field $B_0 = 0.1\,\mathrm{T}$ is measured. When the beam propagates through 1 m of plasma, the polarization direction turns of 90°. Find the plasma density.

Exercise 2

Show that in a plasma described by the Vlasov equation:

$$\frac{\partial f}{\partial t} + \boldsymbol{v} \frac{\partial f}{\partial \boldsymbol{x}} + \frac{q}{m} (\boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B}) \cdot \frac{\partial f}{\partial \boldsymbol{v}} = 0$$

the evolution of the energy of the particles, E_p , and of the fields, E_f , is described by:

$$\frac{dE_p}{dt} = -\frac{dE_f}{dt} = \int d^3x (\boldsymbol{j} \cdot \boldsymbol{E})$$

and the total energy is conserved.