Plasma Physics I

Series 6 (October 17, 2024)

Prof. Christian Theiler

Swiss Plasma Center (SPC) École Polytechnique Fédérale de Lausanne (EPFL)

Exercise 1

In the lecture we have neglected the effect of collisions in the two-fluid model used to derive the dispersion relation of a wave in a magnetised plasma.

Consider a cold unmagnetized fluid plasma $(T = 0, \mathbf{B_0} = 0)$.

- a.) Derive the dispersion relation of waves in such plasma keeping the collision term in the momentum equation for the electrons.
- b.) Show that in this case longitudinal waves (Langmuir waves) are damped.

Exercise 2

An antenna can detect frequencies around $f = 80 \,\mathrm{MHz}$ and is used to measure the wave coming from a pulsar producing a broad electromagnetic spectrum.

Due to the dispersion of the group velocity caused by the interstellar plasma, the measured frequency during a pulse drift varies according to $df/dt = -5 \,\mathrm{MHz} \cdot \mathrm{s}^{-1}$.

a.) Considering $\omega^2\gg\omega_p^2$ and neglecting the magnetic field in the interstellar plasma, demonstrate that:

$$\frac{\mathrm{d}f}{\mathrm{d}t} \approx -\frac{c}{x} \frac{f^3}{f_p^2}$$

where $f_p = \omega_p/2\pi$ and x is the distance of the pulsar.

b.) Find the distance of the pulsar in parsec (1 parsec = 3×10^{16} m) considering a mean electron density in space of 2×10^6 m⁻³.