Plasma Physics I

Series 5 (October 10, 2024)

Prof. Christian Theiler

Swiss Plasma Center (SPC) École Polytechnique Fédérale de Lausanne (EPFL)

Exercise 1

a.) Consider the magnetic flux through a given surface moving with the plasma,

$$\Phi_B(t) \equiv \int \int_{S(t)} \mathbf{B}(t) \cdot \mathbf{dS}$$

Starting from the ideal MHD equations, show that the magnetic flux is frozen in the plasma,

$$\frac{d\Phi_B}{dt} = 0$$

What does this imply on the magnetic topology in such a plasma?

- b.) Consider now that the plasma has some finite resistivity. How does this affect the magnetic flux?
- c.) Find the diffusion equation for the magnetic field in a resistive plasma. Estimate the diffusion time of the magnetic field in ITER (characteristic length $L=3\,\mathrm{m}$, electron temperature $T_e=10\,\mathrm{keV}$).

Exercise 2

a.) Demonstrate that the propagation of a transverse wave along the z axis $(\mathbf{k} = k\mathbf{e_z})$ in a string with tension S and mass per unit length M is given by:

$$\frac{\partial^2 y}{\partial z^2} = \frac{M}{S} \frac{\partial^2 y}{\partial t^2}$$

- b.) Considering the ideal MHD model, demonstrate that the Alfvén waves (or shear waves), propagating along the magnetic field $(\mathbf{k} \parallel \mathbf{B_0}, \mathbf{B_0} = B_0 \mathbf{e}_z)$, can be described with the same equation of a transverse wave in a string. Identify the terms M and S in the equation in a.) for the Alfvén waves.
- c.) The tokamak ITER will operate with a plasma D T at 13 keV with a uniform electron density $n_e=10^{20}\,\mathrm{m}^{-3}$ and a magnetic field $B=6\,\mathrm{T}$. Evaluate the phase velocity of the Alfvén waves for that plasma.
- d.) Fusion reactions $D^+ + T^+ \to He^{++}_{(3.5 \text{MeV})} + n_{(14 \text{MeV})}$ occur when a plasma is heated with ion beams D^+ with energy of 1 MeV. Which charged particles are resonant with the Alfvén waves (same velocity with wave)?