Plasma I

Series 3 (September 26, 2024)

Prof. Christian Theiler

Swiss Plasma Center (SPC) École Polytechnique Fédérale de Lausanne (EPFL)

Exercise 1

Compare the momentum transfer cross-section for the electron-ion collisions with small deflection angles with the cross-section for the electron-ion collisions with a deflection angle larger than 90° . What can you say for a deuterium plasma with $T_e = T_i = 1 \, \text{keV}$ and $n = 10^{20} \, \text{m}^{-3}$?

Exercise 2

Consider the total momentum lost by a population of electrons colliding with a population of ions, in the three-dimensional space. Demonstrate that for a Maxwellian distribution of electrons with a drift velocity v_d ($v_d << v_{the}$) in the x direction, the average of the collision frequency is given by:

$$\bar{\nu}_p^{e/i} = \frac{1}{3} \sqrt{\frac{2}{\pi}} \nu_p^{e/i}(v_{the}) \simeq 0.26 \cdot \nu_p^{e/i}(v_{the})$$

where $\nu_p^{e/i}(v_{the})$ is the collision frequency for the momentum transfer between electrons and ions at the electron velocity v_{the} .

Indications:

- consider the physical meaning of the effective collision frequency to determine which is the physical quantity that has to be averaged.
- suppose $\ln \Lambda = const$, independent of the velocity and equal for electrons and ions.

Exercise 3

Consider the relaxation process of alpha particles (α 's) at 3.5 MeV created by fusion reactions in a deuterium-tritium plasma (50 : 50 D-T). Evaluate the time-scale for the energy loss of α 's in a plasma with $n_e = 10^{20} \,\mathrm{m}^{-3}$. Consider the collisions between three plasma species, assuming $T_e = T_D = T_T = 10 \,\mathrm{keV}$.

- a.) Which species is the most important in the α 's thermalisation process?
- b.) Which species is heated more by α 's particles?

Suggestion: start with a thermal energy for the α 's of 3.5 MeV and then consider the different regimes corresponding to the different energies of the α 's during the thermalisation.