
Solid state physics III Homework 2 Nov. 6th, 2024

Energy Spectrum of Electron in a Magnetic Field on a Lattice

Consider a two-dimensional square lattice of N ×N sites. c†n,m and cn,m represent the creation and
annihilation operators at site r⃗ = na⃗1 +ma⃗2; a⃗1 and a⃗2 are the primitive lattice vectors of the square
lattice, a⃗1 = ax̂ and a⃗2 = aŷ, with lattice constant a.

(a) Write the tight-binding Hamiltonian, Ĥ, for a electron moving on this lattice, including only
nearest-neighbor hopping integral t.

Answer

The tight-binding Hamiltonian Ĥ for an electron on a two-dimensional square lattice with nearest-
neighbor hopping can be expressed as:

Ĥ = −t
∑
n,m

(
c†n+1,mcn,m + c†n−1,mcn,m + c†n,m+1cn,m + c†n,m−1cn,m

)
.

(b) Using the usual procedure, i.e. writing the eigenvalue equation in momentum space, find its band

structure E(k⃗) as a function of the momentum space vector k⃗. [2 points]

Answer

See mathematica notebook.

(c) (Optional) One way of displaying the E(k⃗) is to produce a contour plot (show the constant

energy lines) of E(k⃗) in the first Brillouin zone. Prepare this plot. [2 points]

Answer

We start by transforming the real-space creation and annihilation operators c†n,m and cn,m into
momentum space:

cn,m =
1√
N

∑
k⃗

eik⃗·r⃗n,mck⃗,

where k⃗ = (kx, ky) is the wavevector in momentum space, r⃗n,m = na⃗1 +ma⃗2 = (na,ma) is the
position of the lattice site, and N is the number of lattice sites.

After substituting and simplifying, the Hamiltonian in momentum space can be diagonalized,
giving the energy eigenvalues E(k⃗) as:

E(k⃗) = −2t (cos(kxa) + cos(kya)) .

(d) Now, introduce a uniform magnetic field B applied perpendicular to the lattice plane. One can

substitute the magnetic field by a vector potential A⃗. Upon this substitution, the effective hopping
term t acquires a phase:

t→ teiϕij

where ϕij =
e
ℏ
∫ j

i
A⃗ · d⃗l represents the phase acquired during hopping from site i to j. Show that

after this substitution, the resulting Hamiltonian is not gauge invariant. [2 point]

Answer
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In the presence of a magnetic field, the hopping term between sites i and j acquires a phase factor.
The modified tight-binding Hamiltonian can be written as:

Ĥ = −
∑
⟨i,j⟩

t eiϕij c†i cj + h.c.

where: - ⟨i, j⟩ denotes nearest-neighbor pairs of sites i and j, - ϕij = e
ℏ
∫ j

i
A⃗ · d⃗l is the phase

acquired by the electron when hopping from site i to site j, - A⃗ is the vector potential associated
with the magnetic field.

Under a gauge transformation, the vector potential A⃗ transforms as:

A⃗→ A⃗′ = A⃗+∇χ,

where χ(r⃗) is an arbitrary scalar function of position.

This change in A⃗ affects the phase ϕij in the hopping term. Specifically, the new phase ϕ′ij between
sites i and j becomes:

ϕ′ij =
e

ℏ

∫ j

i

A⃗′ · d⃗l = e

ℏ

∫ j

i

(
A⃗+∇χ

)
· d⃗l = ϕij +

e

ℏ
(χj − χi) ,

where χi and χj are the values of χ at sites i and j.

Under this transformation, the hopping term teiϕij is modified as follows:

teiϕij → teiϕ
′
ij = teiϕijei

e
ℏ (χj−χi).

To restore the Hamiltonian’s form under the gauge transformation, we must also transform the
creation and annihilation operators:

ci → c′i = cie
i e
ℏχi , c†i → c† ′i = c†ie

−i e
ℏχi .

Substituting these into the Hamiltonian gives:

Ĥ = −
∑
⟨i,j⟩

t eiϕij c†i cj + h.c. → −
∑
⟨i,j⟩

t eiϕij c† ′i c
′
j + h.c. = Ĥ,

showing that the physical observable (i.e., the Hamiltonian) does not depend on the gauge choice
for the vector potential.

Thus, we have shown that under a gauge transformation, the phase eiϕij changes, and the Hamilto-
nian itself would not remain invariant unless we also transform the electron operators. Therefore,
the Hamiltonian is not gauge invariant in terms of the untransformed operators, but gauge invari-
ance can be restored by transforming the electron operators accordingly.

(e) We choose the Landau gauge A⃗ = (0, Bx, 0) to represent the magnetic vector potential A⃗ cor-
responding to this uniform magnetic field. Realize that the hopping phase factor is 1 in the
x-direction. Calculate the phase factor when the electron hops along the y-direction [from (n,m)
to (n,m+ 1)] and express it in terms of the magnetic flux per unit cell, Φ = Ba2. [3 points]

Answer

The magnetic field B⃗ = Bẑ (perpendicular to the xy-plane) is represented by the vector potential
in the Landau gauge:

A⃗ = (0, Bx, 0).
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When an electron hops from a site (n,m) to the neighboring site (n,m + 1) in the y-direction,

it acquires a phase due to the magnetic vector potential A⃗. This phase factor ϕ(n,m)→(n,m+1) is
given by:

ϕ(n,m)→(n,m+1) =
e

ℏ

∫ (n,m+1)

(n,m)

A⃗ · d⃗l.

Since the electron is moving in the y-direction from (n,m) to (n,m + 1), we have d⃗l = (0, a, 0).
Therefore,

ϕ(n,m)→(n,m+1) =
e

ℏ

∫ y=(m+1)a

y=ma

A⃗ · d⃗l = e

ℏ

∫ y=(m+1)a

y=ma

Bxdy.

Since x = na is constant along this path, the integral simplifies to:

ϕ(n,m)→(n,m+1) =
e

ℏ
·Bna · a =

eBa2

ℏ
· n.

The magnetic flux per unit cell is given by Φ = Ba2. Thus, we can rewrite the phase as:

ϕ(n,m)→(n,m+1) =
eΦ

ℏ
· n.

The phase factor for hopping in the y-direction (from (n,m) to (n,m+ 1)) is:

ϕ(n,m)→(n,m+1) =
eΦ

ℏ
· n.

This result shows that the phase acquired by the electron depends on the x-coordinate n, and is
proportional to the magnetic flux per unit cell Φ = Ba2.

(f) Define α = Φ/Φ0, Φ0 = h/e is the magnetic flux quantum, and rewrite the real space Hamiltonian
in terms of α. [2 points]

Answer

Define the dimensionless parameter

α =
Φ

Φ0
,

where Φ = Ba2 is the magnetic flux per unit cell and Φ0 = h
e is the magnetic flux quantum.

The tight-binding Hamiltonian for an electron on a two-dimensional square lattice in the presence
of a perpendicular magnetic field in the Landau gauge A⃗ = (0, Bx, 0) becomes:

Ĥ = −t
∑
n,m

(
c†n+1,mcn,m + c†n−1,mcn,m + ei2παnc†n,m+1cn,m + e−i2παnc†n,m−1cn,m

)
.

In this form: - The hopping in the x-direction remains unchanged, as the phase factor is 1. - The
hopping in the y-direction acquires a phase factor of e±i2παn, where α = Φ

Φ0
.

(g) Now, assume periodic boundary conditions in the y-direction. This allows you to write c†n,m|0⟩ =
eikym|ψn⟩, where ky is the wavevector along the y-direction. Make this substitution and show
that the eigenvalue equation for |ψn⟩ is given by

E|ψn⟩ = −t [|ψn+1⟩+ |ψn−1⟩+ 2 cos(2παn+ ky) |ψn⟩] . (1)

[3 points]

Answer
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Putting all these terms together, the Hamiltonian acting on |ψn⟩ is:

Ĥ|ψn⟩ = −t
[
|ψn+1⟩+ |ψn−1⟩+ ei2παn|ψn⟩+ e−i2παn|ψn⟩

]
.

Using the fact that the two terms with e±i2παn combine as:

ei2παn + e−i2παn = 2 cos(2παn),

we obtain the final eigenvalue equation:

E|ψn⟩ = −t [|ψn+1⟩+ |ψn−1⟩+ 2 cos(2παn+ ky)|ψn⟩] .

(h) For a rational value of α = p/q (where p and q are integers), Eq. (1) is periodic with period q,
i.e. |ψn+q⟩ = |ψn⟩. In this case, we can represent the problem using a q × q matrix. Write down
this matrix form of the Hamiltonian. [2 points]

Answer

The Hamiltonian can be written as a q × q matrix with the following structure:

H = −t



2 cos(2πα0 + ky) 1 0 · · · 0 0
1 2 cos(2πα1 + ky) 1 · · · 0 0
0 1 2 cos(2πα2 + ky) · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 2 cos(2πα(q − 2) + ky) 1
0 0 0 · · · 1 2 cos(2πα(q − 1) + ky)


.

Here, the diagonal terms are 2 cos(2παn+ ky), representing the on-site energy of the state |ψn⟩.
The off-diagonal terms represent the hopping between neighboring sites, which are 1 on the n+1
and n− 1 sites.

(i) For a given ky, one can solve this matrix numerically to find the energy eigenvalues (using Python,
MATLAB, Mathematica, or a similar tool). Set up this code and find the band structure for
α = 1/16 as a function of ky in the first Brillouin zone. For numerical evaluation one discretize
ky into having a large number of values (this represents the number of sites in the y-direction).
assume ky ∈ (0, π) [3 points]

Answer

(j) In the regime of low flux (Φ ≪ 1), the band structure of our tight binding model is closely
connected to the Landau levels of a two-dimensional electron gas in a magnetic field, where the
electrons form discrete Landau levels with energies given by En = ℏωc(n+1/2), where ωc = eB/m
is the cyclotron frequency and n = 0, 1, 2, · · · indexes the Landau levels. Explain how the energy
spectrum derived in the last question (α = 1/16 is an example of weak flux) resembles the Landau
levels of a free particle in a magnetic field. The differences between the two, however, are linked
to the presence of a periodic lattice. [2 points]

Answer

When α is small, it implies that the magnetic field B is weak or that the lattice constant a is
small compared to the magnetic length scale. For small α, the magnetic unit cell (the area over
which one flux quantum Φ0 is applied) is much larger than the physical unit cell of the lattice.
This means that the influence of the lattice on the magnetic energy levels is reduced, allowing the
spectrum to resemble the continuum Landau levels seen in a free-electron system.

In a continuous two-dimensional electron gas in a magnetic field, electrons form discrete Landau
levels with energies given by:

En = ℏωc

(
n+

1

2

)
,
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where ωc =
eB
m is the cyclotron frequency and n = 0, 1, 2, . . . indexes the Landau levels.

In the lattice case, for very small α, the Harper equation for the tight-binding model in a magnetic
field can be approximated by these continuous Landau levels. The lattice introduces weak periodic
potential effects that slightly modify these levels, but they remain close to the Landau level
structure.

In the weak flux limit, the tight-binding model yields bands that are nearly flat and closely spaced,
resembling the Landau levels. However, due to the presence of the periodic lattice potential,
each Landau level splits into narrow subbands (minibands) in the Hofstadter spectrum. These
minibands can be understood as the result of a weak perturbation (from the lattice potential)
applied to the Landau levels, causing slight shifts and gaps in the otherwise degenerate levels.

(k) (Optional) Generalize the numerical code to evaluate the spectrum for any rational value of α,
and ky in the first Brillouin zone. Now, vary α ∈ [0, 1] and plot the energy eigenvalues for all ky
in the y-axis as a function of α. Only take rational fractions of α with q which not more than say
50. Describe the features of this plot? [3 points]

Answer

The problem you have solved so far is called ”Hofstadter’s butterfly” – the first example of scientific
data visualization.
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