(A.)

1. Show that the states $|S_{\alpha,\beta}\rangle$ $\alpha,\beta \in \{Cu,O\}$ are singlets. To show that $(S_{\alpha}^{-} + S_{\beta}^{-})|S_{\alpha,\beta}\rangle = 0$ and $(S_{\alpha}^{z} + S_{\beta}^{z})|S_{\alpha,\beta}\rangle = 0$, we use the fermionic anticommutation relations and the fact that acting on the vacuum $|0\rangle$ with the annihilation operators gives zero.

$$(S_{\mathrm{Cu}_{1}}^{-} + S_{\mathrm{Cu}_{2}}^{-})|S_{\mathrm{Cu},\mathrm{Cu}}\rangle = (d_{1,\downarrow}^{\dagger}d_{1,\uparrow} + d_{2,\downarrow}^{\dagger}d_{2,\uparrow})\frac{1}{\sqrt{2}}(d_{1,\uparrow}^{\dagger}d_{2,\downarrow}^{\dagger} - d_{1,\downarrow}^{\dagger}d_{2,\uparrow}^{\dagger})|0\rangle$$

$$= \frac{1}{\sqrt{2}}(d_{1,\downarrow}^{\dagger}d_{2,\downarrow}^{\dagger} + d_{2,\downarrow}^{\dagger}d_{1,\downarrow}^{\dagger})|0\rangle$$

$$= 0$$

$$(1)$$

and

$$(S_{\mathrm{Cu}_{1}}^{z} + S_{\mathrm{Cu}_{2}}^{z})|S_{\alpha,\beta}\rangle = \frac{1}{2} \left((n_{d_{1,\uparrow}} - n_{d_{1,\downarrow}}) + (n_{d_{2,\uparrow}} - n_{d_{2,\downarrow}}) \right) \frac{1}{\sqrt{2}} (d_{1,\uparrow}^{\dagger} d_{2,\downarrow}^{\dagger} - d_{1,\downarrow}^{\dagger} d_{2,\uparrow}^{\dagger})|0\rangle$$

$$= \frac{1}{2\sqrt{2}} \left(1 \cdot d_{1,\uparrow}^{\dagger} d_{2,\downarrow}^{\dagger} + 1 \cdot d_{1,\downarrow}^{\dagger} d_{2,\uparrow}^{\dagger} - 1 \cdot d_{1,\downarrow}^{\dagger} d_{2,\uparrow}^{\dagger} - 1 \cdot d_{1,\uparrow}^{\dagger} d_{2,\downarrow}^{\dagger} \right)|0\rangle \qquad (2)$$

$$= 0$$

In the same way it can be shown that these two equalities are valid for the other three ways of constructing singlet states.

2. Show that the states $|T_{\alpha,\beta}^{\gamma}\rangle$ $\alpha,\beta\in\{Cu,O\},\ \gamma\in\{1,0,-1\}$ are triplets. We study the case of triplets built with one electron on each copper atom:

$$\frac{1}{2} \left((n_{d_{1,\uparrow}} - n_{d_{1,\downarrow}}) + (n_{d_{2,\uparrow}} - n_{d_{2,\downarrow}}) \right) d_{1,\uparrow}^{\dagger} d_{2,\uparrow}^{\dagger} |0\rangle = \frac{1}{2} 2 d_{1,\uparrow}^{\dagger} d_{2,\uparrow}^{\dagger} |0\rangle
\frac{1}{2} \left((n_{d_{1,\uparrow}} - n_{d_{1,\downarrow}}) + (n_{d_{2,\uparrow}} - n_{d_{2,\downarrow}}) \right) d_{1,\downarrow}^{\dagger} d_{2,\downarrow}^{\dagger} |0\rangle = \frac{1}{2} (-2) d_{1,\downarrow}^{\dagger} d_{2,\downarrow}^{\dagger} |0\rangle
\frac{1}{2} \left((n_{d_{1,\uparrow}} - n_{d_{1,\downarrow}}) + (n_{d_{2,\uparrow}} - n_{d_{2,\downarrow}}) \right) \frac{1}{\sqrt{2}} (d_{1,\uparrow}^{\dagger} d_{2,\downarrow}^{\dagger} + d_{1,\downarrow}^{\dagger} d_{2,\uparrow}^{\dagger}) |0\rangle =
= \frac{1}{2\sqrt{2}} \left(1 \cdot d_{1,\uparrow}^{\dagger} d_{2,\downarrow}^{\dagger} - 1 \cdot d_{1,\downarrow}^{\dagger} d_{2,\uparrow}^{\dagger} + 1 \cdot d_{1,\downarrow}^{\dagger} d_{2,\uparrow}^{\dagger} - 1 \cdot d_{1,\uparrow}^{\dagger} d_{2,\downarrow}^{\dagger} \right) |0\rangle
= 0$$
(3)

It remains to show that the state $|T_{\text{Cu,Cu}}^0\rangle$ is indeed orthogonal to the singlet $|S_{\text{Cu,Cu}}\rangle$.

$$\langle S_{\mathrm{Cu,Cu}} | T_{\mathrm{Cu,Cu}}^{0} \rangle = \frac{1}{2} \langle 0 | (d_{2,\downarrow} d_{1,\uparrow} - d_{2,\uparrow} d_{1,\downarrow}) (d_{1,\uparrow}^{\dagger} d_{2,\downarrow}^{\dagger} + d_{1,\downarrow}^{\dagger} d_{2,\uparrow}^{\dagger}) | 0 \rangle$$

$$= \frac{1}{2} \langle 0 | (d_{2,\downarrow} d_{1,\uparrow} d_{1,\uparrow}^{\dagger} d_{2,\downarrow}^{\dagger} - d_{2,\uparrow} d_{1,\downarrow} d_{1,\downarrow}^{\dagger} d_{2,\uparrow}^{\dagger}) | 0 \rangle$$

$$= \frac{1}{2} \langle 0 | (d_{2,\downarrow} d_{2,\downarrow}^{\dagger} - d_{2,\uparrow} d_{2,\uparrow}^{\dagger}) | 0 \rangle$$

$$= \frac{1}{2} \langle 0 | (1 - d_{2,\downarrow}^{\dagger} d_{2,\downarrow}) - (1 - d_{2,\uparrow}^{\dagger} d_{2,\uparrow}) | 0 \rangle$$

$$= 0$$

$$(4)$$

3. The elements of the \mathcal{B} basis are eigenstates of \mathcal{H}_{Δ} et \mathcal{H}_{H} .

- The Hamiltonian \mathcal{H}_{Δ} counts the number of electrons that are on p orbitals. It costs the system an energy Δ to have an electron on a p orbital, and an energy 2Δ to have an electron on each p orbitals.
- By switching the operators in \mathcal{H}_H we get an operator of the form

$$\mathcal{H}_H = \sum_{\sigma,\sigma'} O_{\sigma,\sigma'} p_{x,\sigma} p_{y\sigma'} \tag{5}$$

where the form of the operators $O_{\sigma,\sigma'}$ is not important. It follows that the effect of \mathcal{H}_H applied to a state that does not have any electrons on p orbitals is equal to zero. Moreover \mathcal{H}_H corresponds to a ferromagnetic Heisenberg interaction (see previous series) between the electrons that are on the orbital p_x and p_y . The triplet states $|T_{\mathrm{O,O}}^1\rangle$, $|T_{\mathrm{O,O}}^0\rangle$ and $|T_{\mathrm{O,O}}^{-1}\rangle$ are eigenstates of \mathcal{H}_H energy $-J_H/4$ and the singlet $|S_{\mathrm{O,O}}\rangle$ is the state of energy $3J_H/4$.

It follows that:

$$\left\{ |T_{Cu,Cu}^{1}\rangle, |T_{Cu,Cu}^{0}\rangle, |T_{Cu,Cu}^{-1}\rangle, |S_{Cu,Cu}\rangle \right\}$$
 (6)

is the ground subspace of \mathcal{H}_0 of energy $E_0 = 0$.

$$\left\{ |T_{Cu,O}^1\rangle, |T_{Cu,O}^0\rangle, |T_{Cu,O}^{-1}\rangle, |S_{Cu,O}\rangle, |T_{O,Cu}^1\rangle, |T_{O,Cu}^0\rangle, |T_{O,Cu}^{-1}\rangle, |S_{O,Cu}\rangle \right\}$$
(7)

is the eigen subspace of \mathcal{H}_0 of energy $E = \Delta$

$$\left\{ |T_{O,O}^1\rangle, |T_{O,O}^0\rangle, |T_{O,O}^{-1}\rangle \right\} \tag{8}$$

is the eigen subspace of \mathcal{H}_0 of energy $E = 2\Delta - J_H/4$ (as we are in the case $J_H \ll \Delta$, $2\Delta - J_H/4 > 0$).

Finally the state

$$|S_{O,O}\rangle$$
 (9)

is an eigen state of energy $E = 2\Delta + 3J_H/4$.

4. We calculate

$$\mathcal{H}_{t}|T_{Cu,Cu}^{1}\rangle = \mathcal{H}_{t}d_{1,\uparrow}^{\dagger}d_{2,\uparrow}^{\dagger}|0\rangle \qquad \mathcal{H}_{t}|T_{Cu,Cu}^{-1}\rangle = \mathcal{H}_{t}d_{1,\downarrow}^{\dagger}d_{2,\downarrow}^{\dagger}|0\rangle \\
= -t(p_{x,\uparrow}^{\dagger}d_{1,\uparrow} + p_{y,\uparrow}^{\dagger}d_{2,\uparrow})d_{1,\uparrow}^{\dagger}d_{2,\uparrow}^{\dagger}|0\rangle \qquad = -t(p_{x,\downarrow}^{\dagger}d_{1,\downarrow} + p_{y,\downarrow}^{\dagger}d_{2,\downarrow})d_{1,\downarrow}^{\dagger}d_{2,\downarrow}^{\dagger}|0\rangle \\
= -t(|T_{O,Cu}^{1}\rangle + |T_{Cu,O}^{1}\rangle) \qquad = -t(|T_{O,Cu}^{-1}\rangle + |T_{Cu,O}^{-1}\rangle) \qquad (10)$$

$$\mathcal{H}_{t}|T_{Cu,Cu}^{0}\rangle = \mathcal{H}_{t}\frac{1}{\sqrt{2}}(d_{1,\uparrow}^{\dagger}d_{2,\downarrow}^{\dagger} + d_{1,\downarrow}^{\dagger}d_{2,\uparrow}^{\dagger})|0\rangle \qquad (10)$$

$$= \frac{-t}{\sqrt{2}}\left[(p_{x,\uparrow}^{\dagger}d_{1,\uparrow} + p_{y,\downarrow}^{\dagger}d_{2,\downarrow})d_{1,\uparrow}^{\dagger}d_{2,\downarrow}^{\dagger} + (p_{x,\downarrow}^{\dagger}d_{1,\downarrow} + p_{y,\uparrow}^{\dagger}d_{2,\uparrow})d_{1,\downarrow}^{\dagger}d_{2,\uparrow}^{\dagger}\right]|0\rangle \qquad (11)$$

$$= -t(|T_{O,Cu}^{0}\rangle + |T_{Cu,O}^{0}\rangle)$$

$$\mathcal{H}_{t}|T_{Cu,Cu}^{0}\rangle = \mathcal{H}_{t}\frac{1}{\sqrt{2}}(d_{1,\uparrow}^{\dagger}d_{2,\downarrow}^{\dagger} - d_{1,\downarrow}^{\dagger}d_{2,\uparrow}^{\dagger})|0\rangle$$

$$= \frac{-t}{\sqrt{2}}\left[(p_{x,\uparrow}^{\dagger}d_{1,\uparrow} + p_{y,\downarrow}^{\dagger}d_{2,\downarrow})d_{1,\uparrow}^{\dagger}d_{2,\downarrow}^{\dagger} - (p_{x,\downarrow}^{\dagger}d_{1,\downarrow} + p_{y,\uparrow}^{\dagger}d_{2,\uparrow})d_{1,\downarrow}^{\dagger}d_{2,\uparrow}^{\dagger}\right]|0\rangle \qquad (12)$$

$$= -t(|S_{O,Cu}^{0}\rangle + |S_{O,uO}^{0}\rangle)$$

Likewise, it is shown that these relations are satisfied by the other elements of the basis.

5. In the previous question we have shown that \mathcal{H}_t applied to any state of the ground subspace $\left\{|T^1_{Cu,Cu}\rangle,|T^0_{Cu,Cu}\rangle,|T^{-1}_{Cu,Cu}\rangle,|S_{Cu,Cu}\rangle\right\}$ gives an orthogonal state to the ground subspace. P_0 being the projector on the ground subspace, we have $P_0\mathcal{H}_tP_0=0$.

The different terms of $\mathcal{H}_{\text{eff}}^{(4)}$ are written with the projector P_0 left and right, separated by a chain of operators. If in the operator string \mathcal{H}_t appears three times, it amounts to considering a process that has three electron hops. According to the previous question we deduce that starting from any state of the ground subspace it is impossible to return to a state of the ground subspace by applying \mathcal{H}_t three times. We deduce that the terms of order 3 in \mathcal{H}_t dans $\mathcal{H}_{\text{eff}}^{(4)}$ are null.

6. We apply $\mathcal{H}_{\mathrm{eff}}^{(2)} = P_0 V S V P_0$ to the state of the ground subspace

$$P_{0}VSVP_{0}|T_{Cu,Cu}\rangle = P_{0}VS(-t)\left(|T_{O,Cu}^{1}\rangle + |T_{Cu,O}^{1}\rangle\right)$$

$$= P_{0}V(-t)\frac{1}{-\Delta}\left(|T_{O,Cu}^{1}\rangle + |T_{Cu,O}^{1}\rangle\right)$$

$$= P_{0}(-t)^{2}\frac{2}{-\Delta}\left(|T_{O,O}^{1}\rangle + |T_{Cu,Cu}^{1}\rangle\right)$$

$$= -\frac{2t^{2}}{\Delta}|T_{Cu,Cu}^{1}\rangle$$
(13)

If we repeat the computation for the other elements of the ground subspace we obtain that P_0VSVP_0 is diagonal:

$$-\frac{2t^2}{\Delta} \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 (14)

The perturbation does not lift the degeneracy of the ground subspace at the 2nd order. It will only be lifted at 4th order in \mathcal{H}_t .

7. We try to calculate the effect of $P_0VS^2VP_0VSVP_0$ on the ground subspace:

$$P_{0}VS^{2}VP_{0}VSVP_{0}|T_{\text{Cu,Cu}}^{1}\rangle = (-t)P_{0}VS^{2}VP_{0}VS(|T_{\text{O,Cu}}^{1}\rangle + |T_{\text{Cu,O}}^{1}\rangle)$$

$$= \frac{-t}{-\Delta}P_{0}VS^{2}VP_{0}V(|T_{\text{O,Cu}}^{1}\rangle + |T_{\text{Cu,O}}^{1}\rangle)$$

$$= \frac{2(-t)^{2}}{-\Delta}P_{0}VS^{2}V|T_{\text{Cu,Cu}}^{1}\rangle$$

$$= \frac{2(-t)^{3}}{-\Delta}P_{0}VS^{2}(|T_{\text{O,Cu}}^{1}\rangle + |T_{\text{Cu,O}}^{1}\rangle)$$

$$= \frac{2(-t)^{3}}{(-\Delta)^{3}}P_{0}V(|T_{\text{O,Cu}}^{1}\rangle + |T_{\text{Cu,O}}^{1}\rangle)$$

$$= -\frac{4t^{4}}{\Delta^{3}}|T_{\text{Cu,Cu}}^{1}\rangle$$
(15)

If we look for the other states of the ground subspace we get:

$$P_0 V S^2 V P_0 V S V P_0 = -\frac{4t^4}{\Delta^3} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 (16)

The result is the same for $P_0VSVP_0VS^2VP_0$.

8. The effect of $P_0VSVSVSVP_0$ on the ground subspace is as follows:

$$P_{0}VSVSVSVP_{0}|T_{\text{Cu,Cu}}^{1}\rangle = -\frac{4t^{4}}{\Delta^{2}(2\Delta - \frac{J_{H}}{4})}|T_{\text{Cu,Cu}}^{1}\rangle$$

$$P_{0}VSVSVSVP_{0}|T_{\text{Cu,Cu}}^{-1}\rangle = -\frac{4t^{4}}{\Delta^{2}(2\Delta - \frac{J_{H}}{4})}|T_{\text{Cu,Cu}}^{-1}\rangle$$

$$P_{0}VSVSVSVP_{0}|T_{\text{Cu,Cu}}^{0}\rangle = -\frac{4t^{4}}{\Delta^{2}(2\Delta - \frac{J_{H}}{4})}|T_{\text{Cu,Cu}}^{0}\rangle$$

$$P_{0}VSVSVSVP_{0}|S_{\text{Cu,Cu}}\rangle = -\frac{4t^{4}}{\Delta^{2}(2\Delta + \frac{3J_{H}}{4})}|S_{\text{Cu,Cu}}\rangle$$
(17)

9. In the basis $\left\{ |T^1_{\mathrm{Cu,Cu}}\rangle, |T^{-1}_{\mathrm{Cu,Cu}}\rangle, |T^0_{\mathrm{Cu,Cu}}\rangle, |S_{\mathrm{Cu,Cu}}\rangle \right\}, \mathcal{H}_{\mathrm{eff}}^{(4)}$ reads:

$$\mathcal{H}_{\text{eff}}^{(4)} = \begin{pmatrix} a & 0 & 0 & 0 \\ 0 & a & 0 & 0 \\ 0 & 0 & a & 0 \\ 0 & 0 & 0 & b \end{pmatrix}$$
 (18)

where $a=-\frac{2t^2}{\Delta}+\frac{4t^4}{\Delta^2}\left(\frac{1}{\Delta}-\frac{1}{2\Delta-\frac{J_H}{4}}\right)$ and $b=-\frac{2t^2}{\Delta}+\frac{4t^4}{\Delta^2}\left(\frac{1}{\Delta}-\frac{1}{2\Delta+\frac{3J_H}{4}}\right)$. We see that the favored spin configurations are $\left\{|T^1_{\mathrm{Cu,Cu}}\rangle,|T^{-1}_{\mathrm{Cu,Cu}}\rangle,|T^0_{\mathrm{Cu,Cu}}\rangle\right\}$. The exchange mechanism described in this series leads to an effective coupling that is ferromagnetic between the two copper atoms.

(B.) Holstein-Primakoff bosons: We consider the Holstein-Primakoff transformation

$$\begin{cases}
S_{+} = \left(\sqrt{2s - \hat{n}}\right) b \\
S_{-} = b^{\dagger} \left(\sqrt{2s - \hat{n}}\right) \\
S_{z} = s - \hat{n}
\end{cases} \tag{19}$$

with $\hat{n} = b^{\dagger}b$.

1. We have

$$\begin{split} [S_+,S_-] &= S_+S_- - S_-S_+ \\ &= \left(\sqrt{2s-\hat{n}}\right)\underbrace{bb^\dagger}_{1+b^\dagger b} \left(\sqrt{2s-\hat{n}}\right) - b^\dagger \left(\sqrt{2s-\hat{n}}\right) \left(\sqrt{2s-\hat{n}}\right) b \\ &= (2s-\hat{n}) + \left(\sqrt{2s-\hat{n}}\right) \hat{n} \left(\sqrt{2s-\hat{n}}\right) - b^\dagger \left(2s-\hat{n}\right) b \\ \text{but } [b^\dagger b, b^\dagger b] = 0 \Rightarrow [b^\dagger b, \sqrt{2s-b^\dagger b}] = 0 \text{ et } \hat{n}b = b^\dagger bb = (bb^\dagger - 1)b = b\hat{n} - b \end{split}$$

$$\Rightarrow [S_{+}, S_{-}] = (2s - \hat{n}) + \hat{n} (2s - \hat{n}) - \hat{n} (2s - \hat{n} + 1)$$

$$= 2s - 2\hat{n}$$

$$= 2S_{z}$$

For $[S_z, S_{\pm}]$, we have

$$[S_z, S_+] = [s - \hat{n}, (\sqrt{2s - \hat{n}}) b]$$

$$= -(\sqrt{2s - \hat{n}}) \underbrace{[\hat{n}, b]}_{=-b} - \underbrace{[\hat{n}, (\sqrt{2s - \hat{n}})]}_{=0} b$$

$$= (\sqrt{2s - \hat{n}}) b$$

$$= S_+$$

and
$$[S_z, S_-] = -[S_z, S_+]^{\dagger} = -S_-$$
.

2. Using

$$\begin{array}{lcl} b^{\dagger}|n\rangle & = & \sqrt{n+1}|n+1\rangle \\ b|n\rangle & = & \sqrt{n}|n-1\rangle \\ \hat{n}|n\rangle & = & n|n\rangle \end{array}$$

we have

$$S_z|n\rangle = (s-\hat{n})|n\rangle$$

= $(s-n)|n\rangle$ (20)

For $S^2 = S_z^2 + \frac{1}{2}(S_+S_- + S_-S_+)$ we have

$$\begin{split} S_z^2|n\rangle &= (s-\hat{n})^2|n\rangle \\ &= (s-n)^2|n\rangle \\ S_+S_-|n\rangle &= \left(\sqrt{2s-\hat{n}}\right)\underbrace{bb^\dagger}_{1+\hat{n}}\left(\sqrt{2s-\hat{n}}\right)|n\rangle \\ &= (2s-n)\left(1+n\right)|n\rangle \\ S_-S_+|n\rangle &= b^\dagger\left(\sqrt{2s-\hat{n}}\right)\left(\sqrt{2s-\hat{n}}\right)b|n\rangle \\ &= b^\dagger\left(\sqrt{2s-\hat{n}}\right)\left(\sqrt{2s-\hat{n}}\right)\sqrt{n}|n-1\rangle \\ &= b^\dagger\left(2s-(n-1)\right)\sqrt{n}|n-1\rangle \\ &= \sqrt{n}\left(2s-n+1\right) \\ &= n(2s-n+1) \end{split}$$

hence

$$\begin{split} S^2|n\rangle &= \left(S_z^2 + \frac{1}{2}(S_+ S_- + S_- S_+)\right)|n\rangle \\ &= \left((s-n)^2 + \frac{1}{2}(2s-n)(1+n) + \frac{1}{2}n(2s-n+1)\right)|n\rangle \\ &= s\left(s+1\right)|n\rangle \end{split}$$

The state $|n\rangle$ is thus an eigen state of S_z and S^2 with eigenvalues m=s-n and s(s+1) respectively. Therefore we have

$$|n\rangle = |s, m = s - n\rangle$$

For a spin s, the eigenvalues of S_z must verify the constraint

$$-s \le m \le s$$

which is equivalent to

$$0 \le n \le 2s$$
.