SOLID STATE PHYSICS I1T Solution session 9 December 14th 2023

(A.)

1. Show that the states [Sa,5) @, 8 € {Cu, O} are singlets. To show that (S; +.55)[Sa,s) = 0 and
(S5 + SE)|Sa,p) = 0, we use the fermionic anticommutation relations and the fact that acting
on the vacuum |0) with the annhilation operators gives zero.

(Scu, + Sou)ISouca) = (d] (dig+db doy)J5(d] (db | —df db )]0)
= g5l dl, +dbdf)lo) W
= 0
and
(S&u, + S&u)Sas) = 3 ((nay, —na,,) + (Nay, — na, ) %(dhd% —df |} )lo)

— 1 Tt Tt Tt Tt
= s (vealdl s valydl - 1af dl - 1a]d )0y @)
=0

In the same way it can be shown that these two equalities are valid for the other three ways of
constructing singlet states.

2. Show that the states |T;ﬁ> a,f € {Cu,0}, v € {1,0,—1} are triplets. We study the case of
triplets built with one electron on each copper atom:

% ((ndl,T - ndl,i,) + (ndz,T - ndz,i)) dI,Td;T|O> = %ZdI,Td;T“»

% ((ndl,T - ndl,L) + (ndz,T - ndz,i)) d;¢d;¢|0> = %(_2)dl,¢d;¢|0>

(3)
% ((ndm =N, )+ (Nay, — ndm)) %(diﬁdgw + d];,id;ﬁ”(» -
=5 (1 by =1 ed]ydy g 1] ] - dhd;,i) 10)
=0
It remains to show that the state T3, ¢,) is indeed orthogonal to the singlet [Scu,cu)-
(SowcnTucnd = 300(dadrr = dagdr ) (d] b +df | 1)]0)

= 3{0l(ddr g} 4] | =z gy} )[0)
= 3(00(daydl, = dapd})[0) (4)
= 30101 —d} dsy) = (1= d} 1da1)[0)

Il
o

3. The elements of the B basis are eigenstates of Ha et Hpy.
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e The Hamiltonian Ha counts the number of electrons that are on p orbitals. It costs the
system an energy A to have an electron on a p orbital, and an energy 2A to have an electron
on each p orbitals.

e By switching the operators in Hy we get an operator of the form

Hy = ZOa,o’px,opya’ (5)

o0’

where the form of the operators O, is not important. It follows that the effect of Hpy
applied to a state that does not have any electrons on p orbitals is equal to zero. Moreover
‘Hpy corresponds to a ferromagnetic Heisenberg interaction (see previous series) between
the electrons that are on the orbital p, and p,. The triplet states |T3 o), |T3 o) and |T07})>
are eigenstates of Hy energy —Jg /4 and the singlet |So o) is the state of energy 3Jy /4.

It follows that:
{178 00 w0 TGk s |Scuca) } (6)

is the ground subspace of Hy of energy Ey = 0.
{17800, 1T84.0): ITeh 0}, 190000, 1T ) T8 ) TG o) 10,00 } (7)

is the eigen subspace of Hy of energy £ = A

{IT3,0):1T8.0),1T5 ) } (8)

is the eigen subspace of Hg of energy E = 2A—Jpy /4 (as we are in the case Jg < A, 2A—Jg /4 >
0).
Finally the state

150.0) (9)
is an eigen state of energy E = 2A + 3.Jy /4.
4. We calculate
HilTqcu) = ’thT di +10) HelToucu) = Hd] dz 110
= (pg,j 4di + Py 1, T)d d2 ¢|0> = (p$ Ldil+ py 12, 1)d L¢d£,¢|0>
= (TS ) + T o) = —t(ITok.) + 1TG00))
(10)
il T8, c0) = Madg(dldb | +di db)0)

= = [(prle +p do)dldb 4 f diy +p dag)dl | dl T] 0y (11)
= —t(IT8.cu) +1T8u0))

il T8, c0) = Hadg(dldb | —di \db))0)
= 5 [(Pz NUR +py 1d, ] ¢d;¢ (pl7¢d1,¢ +p;Td2,T)d1 ¢d2 4 0y (12)

= —t (|Sg Cu> + |SCu O>)

Likewise, it is shown that these relations are satisfied by the other elements of the basis.



SOLID STATE PHYSICS III solution session 9 December 14th 2023

5. In the previous question we have shown that H; applied to any state of the ground subspace

(1T 0 1T TG 0 1Scu ) }

gives an orthogonal state to the ground subspace. Py

being the projector on the ground subspace, we have Poy’H.FPy = 0.

The different terms of Hé;lf) are written with the projector Py left and right, separated by a
chain of operators. If in the operator string H; appears three times, it amounts to considering a
process that has three electron hops. According to the previous question we deduce that starting
from any state of the ground subspace it is impossible to return to a state of the ground subspace
by applying H; three times. We deduce that the terms of order 3 in H; dans "H(Efflf)are null.

6. We apply ’Hiz) = PyV SV P, to the state of the ground subspace

PoV SV Py|Tcu,cu)

If we repeat the computation for the
PyV SV Py is diagonal:

= POVS(_t) (|T5,Cu> + |T(17u,0>)
= PV(—t)Zx (ITd.cu) + | TEw0))

= PO(ft)zﬁ (‘Té,0> + |Té‘u,Cu>)
2
_%|Té'u,Cu>

other elements of the ground subspace we obtain that

1000
222 0 1 0 0
“Aloo1o0 (14)
00 0 1

The perturbation does not lift the degeneracy of the ground subspace at the 2nd order. It will

only be lifted at 4th order in H;.

7. We try to calculate the effect of PyV S2V PyV SV P, on the ground subspace:

P()VSQVPOVSVPO |TC1]u,Cu>

= (-)PVS*VRVS(TE cu) + Tu,0))
= RPVSVRV(TE c) + |Tu0))

= %POVSQV|TCIIU,CU>

If we look for the other states of the ground subspace we get:

PVS?VPVSVPy = —

2(—t)® 2171 1 (15)
= "X PVST5 cu) +1Tcuo))
13
= ?ET?SPOV('T(l),Cu> + |TC1711,O>)
4
= 7%|T(13u,Cu>
1 0 0 O
a4 o 1 0 0
A3l 0 01 0 (16)
0 0 0 1

The result is the same for PyV SV PV S?V P,.
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8. The effect of PV SV SV SV Py on the ground subspace is as follows:

4t

RV SVSVSVR|TE, cu) _m|Téu,Cu>
— 4 —
RVSVSVSVR|To, cw) = ~ SeATTD Téu o) )
RV SVSVSVR|TE, cu) —m| TGu,cu)
PV SV SV SV FBy|Scu,cu) ﬁj&h;)|50u,0u>
9. In the basis {|T(1:u,cu>» ITea.cu)s 1T cu)s |SCU7CU>}, ’H,éiff) reads:
a 0 0 O
w [0 a0 0
Het =1 0 0 a 0 (18)
0 0 0 b
2
where a = —*4— 4At2 <i — 2A1Jf> and b = —*4— 4At2 <i — 2A+13{1H> We see that the fa-

vored spin configurations are {|Téu,cu>7 |T61117Cu>7 |T8U,Cu>}' The exchange mechanism described

in this series leads to an effective coupling that is ferromagnetic between the two copper atoms.

(B.) Holstein-Primakoff bosons: We consider the Holstein-Primakoff transformation

5+ =(V2s—n)b
S
with 7 = bTb.
1. We have
S.,5] = 8.5 -5,
= (vas—=a) g (vas—a) — o' (vVas—a) (Vas—a)b
1+btb

= @s—a)+ (V2s—a)a (Vas—a) — bl (25— )b

but [b1h,bTb] = 0 = [bTb, /25 — b1b] = 0 et fb = bTbb = (bt — 1)b = b — b

=[Sy,5] = 2s—n)+n(2s—n)—n(2s—n+1)
= 25—2n
= 28,

For [S,, S1], we have

S.,5,] = [s—ﬁ,( zs—ﬁ)b]

- —( 2s—ﬁ>[ﬁ,b]—[ﬂ7( 25—ﬁ>]b
R

= (vas=a)b
= S,

and [S,,S_] = —[S.,9,]T = —5_.
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2. Using
biln) = Vn+liln+1)
bny = valn—1)
we have
S:n) = (s —n)n)
= (s—n)n) (20)
For §% = §2 + 1(S;S_ 4+ 5_5) we have
S2n) = (s —n)?ln)
= (s—n)l)
S4S_|n)y = 25 — ﬁ) &bj/ (\/28 - ﬁ) |n)
147

S_Siln) = bf (\/23 —ﬁ)

— b (25— (n— 1)) Viln— 1)
Vi (25 =+ 1) v/aln)

n(2s —n+1)
hence
S2n) = <S§ + %(5;5, + SS+)> n)
_ ((s—n)2 +%(23—n) (14n)+ ;n(Qs—n—i-l)) In)

= s(s+1)n)

The state |n) is thus an eigen state of S, and S? with eigenvalues m = s — n and s(s + 1)
respectively. Therefore we have
|ny =|s,m =s—n)

For a spin s, the eigenvalues of S, must verify the constraint
—s<m<s

which is equivalent to



