SOLID STATE PHYSICS I1T Solution session 7 November 13th 2024

The Schrédinger equation is given by
H=—5.Vi-5.V3+V(ri—rs) 0
HY = EV

For two electrons with total momentum K = kq + ks = 0, k; = —ko = k, the wave function of the
relative motion can be decomposed into plane waves as

U(ry,re) = U(ry —ra) Z etk (rimra), (2)

We also set h = 1.

1. With e = k?/(2m) and using

we have
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After a Fourier transform,
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Similarly, for E¥(r),
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Thus, the Schrodinger equation in momentum space is given by

(E 26k/ \I/k/ = ZVk’ k\IIk (4)
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2. Let us consider the case Vi_p = —|v|, then the equation (4) becomes
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3. We assume
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and )
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Thus, by defining ko by k3/2m = e + wp = k%/2m + wp, we obtain
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But for wp < er we have kg = Qmep(l—i-“:—?)zkp—i—mwp/k‘p.

On the other hand F = 2ep — ¢, and with ¢, < ep = vVmE ~ kp — ’2’?; The argument of the
log therefore becomes
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Eq.(7) then becomes

1
L mke (e (11)
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and we get
-1
€ ~ 2wp (epFQ‘vl — 1) (12)

with pr = mkr/(272) the density of states at the Fermi level.

This calculation could also be done in the following way:
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This integral is restricted to energies close to er (at a maximum distance of the order of wp)
for which p(€) ~ pp, and so
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which gives exactly the same result.
. We immediately get the expression in the limit pp|v| < 1,
€p ~ 2wDefﬁ, (13)
and in the limit pp|v| > 1
€ ~ wppr|vl. (14)



