The Schrödinger equation is given by

$$\begin{cases}
H = -\frac{1}{2m}\nabla_1^2 - \frac{1}{2m}\nabla_2^2 + V(|\boldsymbol{r}_1 - \boldsymbol{r}_2|) \\
H\Psi = E\Psi
\end{cases}$$
(1)

For two electrons with total momentum $\mathbf{K} = \mathbf{k}_1 + \mathbf{k}_2 = 0$, $\mathbf{k}_1 = -\mathbf{k}_2 = \mathbf{k}$, the wave function of the relative motion can be decomposed into plane waves as

$$\Psi(\boldsymbol{r}_1, \boldsymbol{r}_2) = \Psi(\boldsymbol{r}_1 - \boldsymbol{r}_2) = \sum_{\boldsymbol{k}} \Psi_{\boldsymbol{k}} e^{i\boldsymbol{k}\cdot(\boldsymbol{r}_1 - \boldsymbol{r}_2)}.$$
 (2)

We also set $\hbar = 1$.

1. With $\epsilon_{\mathbf{k}} = \mathbf{k}^2/(2m)$ and using

$$\begin{cases}
\mathbf{r} = \mathbf{r}_1 - \mathbf{r}_2 \\
\mathbf{R} = \frac{1}{2}(\mathbf{r}_1 + \mathbf{r}_2)
\end{cases}$$
(3)

we have

$$\begin{split} H\Psi(\boldsymbol{r}) &= \left(-\frac{1}{2m}\nabla_1^2 - \frac{1}{2m}\nabla_2^2 + V(\boldsymbol{r}_1 - \boldsymbol{r}_2)\right) \sum_{\boldsymbol{k}} \Psi_{\boldsymbol{k}} e^{i\boldsymbol{k}\cdot(\boldsymbol{r}_1 - \boldsymbol{r}_2)} \\ &= \sum_{\boldsymbol{k}} \left(\frac{\boldsymbol{k}^2}{2m} + \frac{\boldsymbol{k}^2}{2m} + V(\boldsymbol{r}_1 - \boldsymbol{r}_2)\right) \Psi_{\boldsymbol{k}} e^{i\boldsymbol{k}\cdot(\boldsymbol{r}_1 - \boldsymbol{r}_2)} \\ &= \sum_{\boldsymbol{k}} \left(2\epsilon_{\boldsymbol{k}} + V(\boldsymbol{r})\right) \Psi_{\boldsymbol{k}} e^{i\boldsymbol{k}\cdot\boldsymbol{r}} \end{split}$$

After a Fourier transform,

$$\begin{split} \int d^3 \boldsymbol{r} H \Psi(\boldsymbol{r}) e^{-i \boldsymbol{k}' \boldsymbol{r}} &= \sum_{\boldsymbol{k}} 2 \epsilon_{\boldsymbol{k}} \Psi_{\boldsymbol{k}} \underbrace{\int d^3 \boldsymbol{r} e^{i (\boldsymbol{k} - \boldsymbol{k}') \cdot \boldsymbol{r}}}_{= \Omega \delta_{\boldsymbol{k}, \boldsymbol{k}'}} + \sum_{\boldsymbol{k}} \Psi_{\boldsymbol{k}} \underbrace{\int d^3 \boldsymbol{r} V(\boldsymbol{r}) e^{i (\boldsymbol{k} - \boldsymbol{k}') \cdot \boldsymbol{r}}}_{\equiv V_{\boldsymbol{k}' - \boldsymbol{k}}} \\ &= \Omega 2 \epsilon_{\boldsymbol{k}'} \Psi_{\boldsymbol{k}'} + \sum_{\boldsymbol{k}} V_{\boldsymbol{k}' - \boldsymbol{k}} \Psi_{\boldsymbol{k}} \end{split}$$

Similarly, for $E\Psi(\mathbf{r})$,

$$\int d^3 {\bm r} E \Psi({\bm r}) e^{-i{\bm k}' \cdot {\bm r}} = E \sum_{{\bm k}} \Psi_{{\bm k}} \underbrace{\int d^3 {\bm r} e^{i({\bm k} - {\bm k}') \cdot {\bm r}}}_{=\Omega \delta_{{\bm k},{\bm k}'}} = \Omega E \Psi_{{\bm k}'}$$

Thus, the Schrödinger equation in momentum space is given by

$$(E - 2\epsilon_{\mathbf{k}'})\Psi_{\mathbf{k}'} = \frac{1}{\Omega} \sum_{\mathbf{k}} V_{\mathbf{k}' - \mathbf{k}} \Psi_{\mathbf{k}}$$
(4)

2. Let us consider the case $V_{{m k}'-{m k}}=-|v|,$ then the equation (4) becomes

$$\Psi_{\mathbf{k}'} = -\frac{|v|}{\Omega} \frac{1}{E - 2\epsilon_{\mathbf{k}'}} \sum_{\mathbf{k}} \Psi_{\mathbf{k}}$$
 (5)

Summing over k' on both sides of the equation,

$$\sum_{\mathbf{k}'} \Psi_{\mathbf{k}'} = -\frac{|v|}{\Omega} \sum_{\mathbf{k}'} \frac{1}{E - 2\epsilon_{\mathbf{k}'}} \sum_{\mathbf{k}} \Psi_{\mathbf{k}}$$
 (6)

and thus

$$-\frac{1}{|v|} = \frac{1}{\Omega} \sum_{\mathbf{k}'} \frac{1}{E - 2\epsilon_{\mathbf{k}'}} \tag{7}$$

3. We assume

$$\Psi_{\mathbf{k}} = 0 \quad \text{if} \quad |\mathbf{k}| < k_F \tag{8}$$

and

$$V_{\mathbf{k}'-\mathbf{k}} = \begin{cases} -|v| & \text{if } \epsilon_F < \epsilon_{\mathbf{k}}, \epsilon_{\mathbf{k}'} < \epsilon_F + \omega_D \\ 0 & \text{if not} \end{cases}$$
(9)

Thus, by defining k_0 by $k_0^2/2m = \epsilon_F + \omega_D = k_F^2/2m + \omega_D$, we obtain

$$\frac{1}{\Omega} \sum_{\mathbf{k'}} \frac{1}{E - 2\epsilon_{\mathbf{k'}}} = \frac{1}{(2\pi)^3} \int \frac{d^3 \mathbf{k'}}{E - 2\epsilon_{\mathbf{k'}}} = \frac{4\pi m}{(2\pi)^3} \int_{k_F}^{k_0} \frac{k'^2}{mE - k'^2} dk'$$

$$= \frac{4\pi m}{(2\pi)^3} \left[-k' + \frac{\sqrt{mE}}{2} \ln \left(\frac{k' + \sqrt{mE}}{k' - \sqrt{mE}} \right) \right]_{k_F}^{k_0}$$

$$= \frac{4\pi m}{(2\pi)^3} \left(k_F - k_0 + \frac{\sqrt{mE}}{2} \ln \left(\frac{\left(k_0 + \sqrt{mE} \right) \left(k_F - \sqrt{mE} \right)}{\left(k_0 - \sqrt{mE} \right) \left(k_F + \sqrt{mE} \right)} \right) \right)$$

But for $\omega_D \ll \epsilon_F$ we have $k_0 = \sqrt{2m\epsilon_F(1 + \frac{\omega_D}{\epsilon_F})} \simeq k_F + m\omega_D/k_F$.

On the other hand $E=2\epsilon_F-\epsilon_b$ and with $\epsilon_b\ll\epsilon_F\Rightarrow\sqrt{mE}\simeq k_F-\frac{m\epsilon_b}{2k_F}$. The argument of the log therefore becomes

$$\frac{\left(k_{0} + \sqrt{mE}\right)\left(k_{F} - \sqrt{mE}\right)}{\left(k_{0} - \sqrt{mE}\right)\left(k_{F} + \sqrt{mE}\right)} \simeq \frac{\left(k_{F} + \frac{m\omega_{D}}{k_{F}} + k_{F} - \frac{m\epsilon_{b}}{2k_{F}}\right)\left(k_{F} - k_{F} + \frac{m\epsilon_{b}}{2k_{F}}\right)}{\left(k_{F} + \frac{m\omega_{D}}{k_{F}} - k_{F} + \frac{m\epsilon_{b}}{2k_{F}}\right)\left(k_{F} + k_{F} - \frac{m\epsilon_{b}}{2k_{F}}\right)}$$

$$= \frac{\left(2k_{F} + \frac{m\omega_{D}}{k_{F}} - k_{F} + \frac{m\epsilon_{b}}{2k_{F}}\right)\left(k_{F} + k_{F} - \frac{m\epsilon_{b}}{2k_{F}}\right)}{\left(\frac{m\omega_{D}}{k_{F}} + \frac{m\epsilon_{b}}{2k_{F}}\right)\left(2k_{F} - \frac{m\epsilon_{b}}{2k_{F}}\right)}$$

$$= \frac{m\epsilon_{b} + \frac{m^{2}\omega_{D}\epsilon_{b}}{2k_{F}^{2}} - \left(\frac{m\epsilon_{b}}{2k_{F}}\right)^{2}}{2m\omega_{D} + m\epsilon_{b} - \frac{m^{2}\omega_{D}\epsilon_{b}}{2k_{F}^{2}} - \left(\frac{m\epsilon_{b}}{2k_{F}}\right)^{2}}$$

$$\simeq \frac{\epsilon_{b}}{2\omega_{D} + \epsilon_{b}}$$

and

$$\int \frac{d^3 \mathbf{k'}}{E - 2\epsilon_{\mathbf{k'}}} \simeq 2\pi m k_F \ln \left(\frac{\epsilon_b}{2\omega_D + \epsilon_b} \right)$$
 (10)

Eq.(7) then becomes

$$-\frac{1}{|v|} \simeq \frac{mk_F}{(2\pi)^2} \ln \left(\frac{\epsilon_b}{2\omega_D + \epsilon_b} \right) \tag{11}$$

and we get

$$\epsilon_b \simeq 2\omega_D \left(e^{\frac{2}{\rho_F|v|}} - 1 \right)^{-1} \tag{12}$$

with $\rho_F = mk_F/(2\pi^2)$ the density of states at the Fermi level.

This calculation could also be done in the following way:

$$\frac{1}{|v|} = \frac{1}{\Omega} \sum_{\mathbf{k}'} \frac{1}{2\epsilon_{\mathbf{k}'} - E} = \int_{\epsilon_F}^{\epsilon_F + \omega_D} d\epsilon \rho(\epsilon) \frac{1}{2\epsilon - E}$$

This integral is restricted to energies close to ϵ_F (at a maximum distance of the order of ω_D) for which $\rho(\epsilon) \simeq \rho_F$, and so

$$\frac{1}{|v|} \simeq \rho_F \int_{\epsilon_F}^{\epsilon_F + \omega_D} d\epsilon \frac{1}{2\epsilon - E} = \frac{1}{2} \rho_F \ln \left(\frac{2(\epsilon_F + \omega_D) - E}{2\epsilon_F - E} \right)
= \frac{1}{2} \rho_F \ln \left(1 + \frac{2\omega_D}{\epsilon_b} \right),$$

which gives exactly the same result.

4. We immediately get the expression in the limit $\rho_F|v| \ll 1$,

$$\epsilon_b \simeq 2\omega_D e^{-\frac{2}{\rho_F|v|}},\tag{13}$$

and in the limit $\rho_F|v|\gg 1$

$$\epsilon_b \simeq \omega_D \rho_F |v|.$$
 (14)