
Solid state physics III Exercise session 6 October 31 2024

Fractional quantum Hall effect in a trapping potential:

In this exercise, we will investigate the effect of a simple trapping potential Vt(r) = 1
2vtr

2 on the
Laughlin states. We consider spinless electrons in two dimensions.

[This exercise is significantly dependent on Exercise 5 where we discussed the case without a
trapping potential. The students need to frequently refer to the that while proceeding with this
exercise.]

In exercise 5, we have introduced the operators

Π̂x/y = p̂x/y +
e

c
Ax/y. (1)

1. Now, we define the following operators

Π̂x(α) = p̂x − α

2
y (2)

Π̂y(α) = p̂y +
α

2
x (3)

X̂(α) = x̂− α−1Π̂y(α) (4)

Ŷ (α) = ŷ + α−1Π̂x(α). (5)

Express Π̂2
x as a function of Π̂2

x(α), Ŷ (α)2 and y2.

[Hint: You need to use the commutation relations derived in Exercise 5.]

Solution: This computation can be cumbersome if not done appropriately. First we can note
that

Π̂2
x = (Π̂x(α) +

α−mωc

2
y)2 = Π̂2

x(α) +
(α−mωc)

2

4
y2 + (α−mωc)Π̂xy. (6)

We used the commutation of Π̂x and y. Then, we can write

Ŷ (α)2 = y2 + α−2Π̂2
x + 2α−1yΠ̂x(α) ⇔ yΠ̂x(α) =

α

2
(Ŷ (α)2 − y2 − α−2Π̂2

x). (7)

We then obtain:

Π̂2
x = Π̂2

x(α) +
(α−mωc)

2

4
y2 + (α−mωc)

α

2
(Ŷ (α)2 − y2 − α−2Π̂2

x) (8)

= (1− α−mωc

2α
)Π̂2

x(α)−
(α−mωc)(α+mωc)

4
y2 +

α(α−mωc)

2
Ŷ (α)2 (9)

2. In the similar fashion, express Π̂2
y as a function of Π̂2

y(α), X̂(α)2 and x2.

Solution: We obtain the expression for Π̂y by exchanging x and y, and X and Y .

3. Show that by choosing α appropriately, one can rewrite the full Hamiltonian, i.e.

HLandau + Vt(r) =
1

2m
(Π̂2

x + Π̂2
y) +

1

2
vtr

2,

1
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in the form
λ1Π̂x(α)

2 + λ2Π̂y(α)
2 + λ3X̂(α)2 + λ4Ŷ (α)2. (10)

Find the expressions of the λj ’s.

Solution: We want the term in y2 obtained in a) to cancel Vt. This gives us:

α2 = 4mvt +m2ω2
c ⇔ α =

√
4mvt +m2ω2

c . (11)

Fixing α to this value, we obtain

λ1 = λ2 =
1

2m

α+mωc

2α
(12)

λ3 = λ4 =
1

2m

α(α−mωc)

2
(13)

4. First, convince yourself that the above Hamiltonian is made of two independent harmonic oscil-
lators and thus, can be written as:

HLandau + V1 = ℏω̃c(a
†a+

1

2
) + ℏωt(b

†b+
1

2
) (14)

Now, determine the frequencies ω̃c and ωt.

[Hint: You can use an analogy from Exercise 5.]

Solution: We verify that [Π̂x/y, X̂/Ŷ ] = 0. We also have:

[Π̂x, Π̂y] = −iℏα (15)

[X̂, Ŷ ] = iℏα−1 (16)

We therefore recognize two independent harmonic oscillators. To get the energy, we just need
to remark that

[Π̂x, Π̂y] = −iℏmωc (17)

In the presence of the trapping field, we have:

m̃cω̃c = α and
1

2m̃c
= λ1 (18)

We obtain

m̃c = m(
α+mωc

2α
)−1 =

2mα

α+mωc
(19)

and therefore

ω̃c =
α+mωc

2
. (20)

Similarly, for the second oscillator m̃tω̃t = α−1

m̃t = m(
α(α−mωc)

2
)−1 =

2m

α(α−mωc)
. (21)

ω̃t =
α−mωc

2
. (22)

5. What is ωt at vt = 0? What does it signify?

Solution: When the trapping potential disappear, the effective mass m̃t diverges, signifying
the rigidity of the effective Harmonic oscillator. We also do recover the appropriate values of ω̃c

and ω̃t in the limit α → mωc.
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6. Show that the eigenstates of the lowest Landau level for vt ̸= 0 (current scenario) have the
same form as without trapping potential (exercise 5) with the length scale lB redefined to a new
length scale. Determine this new length scale.

Solution: By dimensional analysis, we always have

[Π̂x, Π̂y] = −iℏ2l−2
B and [X̂, Ŷ ] = il′2B . (23)

The length scale of both oscillators remains therefore equal here. Note again how dimensional
analysis simplify all such computations. We therefore obtain:

l̃−4
B =

α2

ℏ2
=

mvt
ℏ2

+ l−4
B (24)

We can define the trapping length l4t = ℏ2

4mvt
to obtain the nice formula:

l̃−4
B = l−4

t + l−4
B . (25)

7. Give the corresponding eigenvalues in the lowest Landau level.

Solution: From there, the rest of the mathematics is the same as before, with

Φ0,m =
zm√

2πl̃2m+2
B m!2m

e
− zz∗

4l̃2
B and the energy ℏ(

ωc + ωt

2
+mωt) (26)

8. Now, consider a system of N electrons in the trapping potential. For non-interacting electrons,
under which condition can we construct the ground state without using states in the higher
Landau levels?

Solution: We want here to be able to say that all electrons prefer to be in the lowest Landau
level rather than an orbital with lower angular momentum but in a higher Landau level. This
means here that we want

ω̃c ≫ ω̃tmmax, (27)

where max is the largest occupied orbital. Neglecting edge effects, we therefore get

ω̃c ≫ ω̃tNν−1. (28)

9. Write the wavefunction Ψ1/3(z1, ..., zN ) of the Laughlin state at ν = 1
3 for the above case. What

is its total angular momentum? What is its energy in the presence of the trapping potential?

Solution: The Laughlin wave function is

Ψ1/m =
∏
i<j

(zi − zj)
me

−
∑
j

|zi|
2

4l2
B . (29)

At filling 1/3, we have m = 3. The total angular momentum correspond to the degree of the

polynomial
∏
i<j

(zi − zj)
m, i.e., 3N(N−1)

2 (up to a sign, for simplification). Correspondingly, its

energy in the trapping potential is

E1/3 = ℏ
ω̃c

2
+ ℏω̃t/

3N(N − 1)

2
+

1

2
). (30)
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10. What area does the state Ψ1/3 approximately occupy?

Solution: We need to evaluate the area covered by a given orbital m in the lowest Landau level.
We need to compute ⟨Φ0,m|r2|Φ0,m⟩. A straightforward computation leads to:

⟨r2⟩ = 1

2πl2m+2
B m!2m

∫∫
r2r2me−r2/2/l2Bd2r⃗ (31)

We can recognize here a computation that we have done before as the integral is exactly the one
that we evaluate when normalizing Φ0,m+1, and therefore

⟨r2⟩ =
2πl2m+2+2

B (m+ 1)!2m+1

2πl2m+2
B m!2m

= 2(m+ 1)l2B . (32)

The area covered by the circular orbital is therefore 2π(m+1)l2B . For Φ1/3, the largest occupied
orbital is mmax = 3(N − 1), and therefore the state occupies an area

2π(3N − 2)l2B . (33)
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