
Solid state physics III Exercise session 5 Oct. 24th 2024

Fractional quantum Hall effect: Laughlin wavefunction

1) Many derivations can also be found in Prof. Mila’s lecture note.

(a) Anticipating the notations of the next question:

HLandau =
1

2m

(
p⃗+

e

c
A⃗
)2

=
1

2m

(
Π̂2

x + Π̂2
y

)
. (1)

(b) The computation of the commutator is fairly standard:

[Π̂x, Π̂y] = [px,
e

c
Ay]− [py,

e

c
Ax] = −i

eℏ
c
(∂xAy − ∂yAx) = −i

ℏeB
c

. (2)

Now, we can define P̂ = Π̂x and Q̂ = c
eB Π̂y. We then rewrite

HLandau =
1

2m

(
P̂ 2 +

e2B2

c2
Q̂2

)
=

P̂ 2

2m
+

1

2
mω2

c Q̂
2, (3)

where

ωc =
eB

mc
. (4)

(c) Working with P and Q as px and x, we recognize the Harmonic oscillator such that [x, px] = iℏ.
This directly gives us the results.

(d) We compute the two correlators

[X̂, Π̂x] = [x, px]−
1

mωc
[Π̂y, Π̂x] = iℏ− iℏ

eB

mcωc
= 0 (5)

[X̂, Π̂y] = 0 (6)

Similarly for Ŷ . Given the form of the Hamiltonian, we directly have [X̂,HLandau] = 0 =
[Ŷ ,HLandau]. Just as an example:

[X̂, Π̂2
y] = [X̂, Π̂y]Π̂y + Π̂y[X̂, Π̂y] = 0 (7)

Finally,

[X̂, Ŷ ] =
1

mωc
[x, px]−

1

mωc
[py, y]−

1

m2ω2
c

[Π̂x, Π̂y] =
iℏ

mωc
(8)

(e) Here, we can prove the result in different minimal ways. The simplest is to note that we can
formally rewrite the Hamiltonian as

HLandau =
1

2m
(Π̂2

x + Π̂2
y) + 0× (X̂2 + Ŷ 2). (9)

With the previously derived commutation relations, that means we can separately solve the
two harmonic oscillators. Let b be the bosonic operator from the second oscillator. As a linear
combination of X̂ and Ŷ , it commutes with the Hamiltonian. The general eigenstates are

Φn,m =
(a†)n(b†)m√

n!m!
|0⟩ with energy ℏ(n+

1

2
)ωc. (10)
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(f) This is where the gauge becomes relevant. Here, two ways offer to us: either we can start
from the proposed equations and show that we recover the original Hamiltonian, or write the
expression of a as a function of Π̂. We remember that a must be linear combination of the Π
and that

Π̂2
x + Π̂2

y = 2mℏωc(a
†a+

1

2
) and [a, a†] = 1. (11)

Let a = αxΠ̂x + αyΠ̂y. That means that

|αx|2 = |αy|2 =
1

2mℏωc
(12)

α∗
xαyΠ̂xΠ̂y + α∗

yαxΠ̂yΠ̂x = −1

2
(13)

(αyα
∗
x − αxα

∗
y)iℏmωc = 1. (14)

The first line is in fact not necessary to solve the problem. The second line imposes α∗
xαy to be

purely imaginary, and the third line then fix the norm. Let αx = i√
2ℏmωc

and αy = −iαx. Then

a =
1√

2ℏmωc

(iΠ̂x + Π̂y) =
1√

2ℏmωc

(i(−iℏ∂x − eB

c

y

2
) + (−iℏ∂y +

eB

c

x

2
) (15)

a =
1√

2ℏmωc

(ℏ(∂x − i∂y) +
mωc

2
(x+ iy)) =

√
2(

√
ℏ

mωc
∂ +

√
mωc

ℏ
z

4
). (16)

We introduce the elementary length

lB =

√
ℏ

mωc
, (17)

which has the correct dimension, and obtain the expression of a we wanted. Note that lB can
be obtained also in the following way. We know that the energy scale is ℏωc, so we can factorize
the second half of the Hamiltonian

1

2
mω2

cQ
2 =

ℏωc

2

mωc

ℏ
Q2. (18)

Given that Q is a length, the natural length scale of the problem should be

l2B =
ℏ

mωc
. (19)

The Hamiltonian can be rewritten in the suggestive form

HLandau = ℏωc

(
l2BP̂

2

2
+

Q̂2

2l2B

)
. (20)

A similar computation gives the result for b. Note that we have a lot of freedom of choice in the
definition of the orbitals. This form is the most convenient on the plane, and for identification
with the angular momentum.

(g) We start with n = m = 0 The vacuum state verifies

a|0⟩ = b|0⟩ = 0, (21)

which leads to

lb∂Φ0,0 +
z

4lB
Φ0,0 = 0 = lb∂Φ0,0 +

z∗

4lB
Φ0,0. (22)
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The first equation implies

Φ0,0(z, z
∗) = e

− zz∗
4l2

B f(z) (23)

and the second

Φ0,0(z, z
∗) = e

− zz∗
4l2

B g(z∗) (24)

Together, we have

Φ0,0(z, z
∗) = Ce

− zz∗
4l2

B . (25)

The normalization constant is obtained by fixing the norm of Φ0,0 to 1∫∫
d2r⃗|Φ0,0|2 = C2

∫∫
d2r⃗e

− r2

2l2
B = C2 × 2πl2B . (26)

To obtain the general form, let s assume that it is correct up for m ≥ 0.

|0,m+ 1⟩ = b†√
m+ 1

|0,m⟩ (27)

Φ0,m+1 =

√
2√

m+ 1
(−lB∂ +

z

4lB
)Φ0,m (28)

=

√
2√

m+ 1
(−lB(−

z

4lB
) +

z

4lB
)

zm√
2πl2m+2

B m!2m
e
− zz∗

4l2
B (29)

=
z√

2l2B(m+ 1)

zm√
2πl2m+2

B m!2m
e
− zz∗

4l2
B . (30)

2) This part is mostly related to the Appendix p.77 in Prof. Mila’s lecture note.

(a) The classical angular momentum is Lz = xpy − ypx.

(b)

Lz = xpy − ypx

= (X +
1

mωc
Πy)(−

1

2
mωcX +

1

2
Πy)− (Y − 1

mωc
Πx)(

1

2
mωcY +

1

2
Πx)

= −1

2
mωc(X

2 + Y 2) +
1

2mωc
(Π2

x +Π2
y)

= ℏ
(
a†a− b†b

)
(31)

(c) This is completely in Prof. Mila’s lecture note.

(d) Again, See the lecture note. We work in the lowest Landau level in this question, so we can throw
away all the α operators, and just apply the results of the previous question for the operators
β±.

(e) We want a recurrence relation on n this time, so we use

|n+ 1,m⟩ = a†√
n+ 1

|n,m⟩ (32)
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We obtain:

Pn+1,m =

√
2√

n+ 1
(−∂Pn,m +

z∗

2lB
Pn,m) (33)

By induction, if P is a polynomial at rank (n,m) it remains a polynomial at rank (n + 1,m).
We also have P0,m a polynomial for all m, so Pn,m is indeed a polynomial in z and z∗.

By construction, the angular momentum of Φn,m is ℏ(n−m).

A computation similar to the previous exercice give us

Φn,0 =
z∗n√

2πl2n+2
B n!2n

e
− zz∗

4l2
B . (34)
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