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(A.) The de Haas-van Alphen effect:

1. For a grand canonical ensemble with chemical potential µ, the partition function is defined as

Z =
∑
i

e−β(Ei−µNi), (1)

where β = 1/(kBT ). Here, each microstate is labelled by i, and has total energy Ei and total
particle number Ni. Let us a now consider a system of free fermions,

H =
∑
α

Eαc
†
αcα, (2)

Here α labels the different possible states in which each fermion can be with energy Eα. The
microstates are described by the occupation number nα ∈ {0, 1} of the different possible states
α. We then have Ei =

∑
α nαEα and Ni =

∑
α nα. The partition function thus reads

Z =

1∑
nα1

=0

1∑
nα2

=0

1∑
nα3

=0

. . .

(∏
α

e−βnα(Eα−µ)

)

=

 1∑
nα1

=0

e−βnα1 (Eα1−µ)

 1∑
nα2

=0

e−βnα2 (Eα2−µ)

 1∑
nα3

=0

e−βnα3 (Eα3−µ)

 . . .

=
∏
α

1∑
n=0

e−βn(Eα−µ)

=
∏
α

(
1 + e−β(Eα−µ)

)
. (3)

In our system, we have

En,kz = ℏωcn+
ℏ2k2z
2m

n = 0, 1, . . . , (4)

where each value with n ̸= 0 occurs twice (due to the spin degeneracy including the Zeeman
effect) and the value with n = 0 occurs only once. In addition, for a given kz the degeneracy of
each Landau level is (see course notes)

D =
LxLy

2πℏc
eB =

LxLyωc

2πℏ
. (5)

The partition function is thus

Z =
∏
kz

∞∏
n=0

(
1 + e−β(En,kz−µ)

)d(n)
, (6)

where d(n) is the number of states with energy En,kz
:

d(0) = D d(n) = 2D for n ≥ 1. (7)
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The free energy (or more precisely the grand potential, as we work in the grand canonical
ensemble) reads

F = − 1

β
logZ = − 1

β

∑
kz

∑
n

d(n) log
(
1 + e−β(En,kz−µ)

)
(8)

In the limit where kz takes continuous values, the expression in Eq. (6) is not so well behaved
(it can still be dealt with). However, for the free energy we obtain

F = − 1

β

Lz

2π

∫ ∞

−∞
dkz

∑
n

d(n) log
(
1 + e−β(En,kz−µ)

)
= − V ωc

2π2ℏβ

∫ ∞

−∞
dkz

[
1

2
log

(
1 + e

−β

(
ℏ2k2

z
2m −µ

))
+

∞∑
n=1

log

(
1 + e

−β

(
ℏωcn+

ℏ2k2
z

2m −µ

))]

= ℏωc

[
1

2
f(µ) +

∞∑
n=1

f(µ− ℏωcn)

]
, (9)

where

f(ϵ) = − mV

2π2ℏ2β

∫ ∞

−∞
dkz log

[
1 + e

β

(
ϵ− ℏ2k2

z
2m

)]
. (10)

Note that we use this notation so that the function f is independent of the magnetic field B.

2. By multiplying by g(x) and by integrating x from 0 to ∞ on both sides of

∞∑
m=−∞

δ(x−m) =

∞∑
n=−∞

e2πinx, (11)

we obtain∫ ∞

0

∞∑
m=−∞

g(x)δ(x−m)dx =

∫ ∞

0

g(x)δ(x)dx+

∞∑
m=1

∫ ∞

0

g(x)δ(x−m)dx =
1

2
g(0) +

∞∑
n=1

g(n),

(12)
and ∫ ∞

0

∞∑
n=−∞

g(x)e2πinxdx =

∫ ∞

0

g(x)dx+

∞∑
n=1

∫ ∞

0

g(x)
(
e2πinx + e−2πinx

)
dx,

=

∫ ∞

0

g(x)dx+

∞∑
n=1

2Re

∫ ∞

0

g(x)e2πinxdx, (13)

where we have used the fact that g(x) is real. By equaling Eq. (12) to Eq. (13) we obtain the
desired relation.

3. We can use the Poisson’s formula for F with g(x) = f(µ− ℏωcx) and obtain

F = ℏωc

[∫ ∞

0

f(µ− ℏωcx)dx+

∞∑
n=1

2Re

∫ ∞

0

f(µ− ℏωcx)e
2πinxdx

]
= F0 + F1. (14)

We identify

F0 = ℏωc

∫ ∞

0

dxf(µ− ℏωcx), and F1 =
mV

βπ2ℏ2
Re

∞∑
n=1

In, (15)

2



Solid state physics III solution session 4 October 16th 2024

where

In = −ℏωc

∫ ∞

0

dx

∫ ∞

−∞
dkz log

[
1 + e

β

(
µ−ℏωcx−

ℏ2k2
z

2m

)]
e2πinx. (16)

Using the change of variable y = ℏωcx we have

F0 = ℏωc

∫ ∞

0

dy

ℏωc
f(µ− y) =

∫ ∞

0

dyf(µ− y), (17)

which is independent of B as B is not involved in f(µ− y).

4. Let us use the change of variable x → ξ = β
(
ℏωcx+

ℏ2k2
z

2m − µ
)
:

In = − 1

β

∫ ∞

−∞
dkz

∫ ∞

β

(
ℏ2k2

z
2m −µ

) dξ log
(
1 + e−ξ

)
exp

(
2πin

(
ξ

βℏωc
− ℏ2k2z

2mℏωc
+

µ

ℏωc

))
. (18)

Because we are in the limit ℏωc ≪ µ and 1 ≪ βµ, we first set the lower boundary of the ξ integral
to −βµ. Indeed, only small values of kz contribute significantly to the kz integral because of the

oscillating factor exp
(
2πin

ℏ2k2
z

2mℏωc

)
. Thus we have

In = − 1

β
e

2πinµ
ℏωc

∫ ∞

−βµ

dξe
2πin
βℏωc

ξ log
(
1 + e−ξ

) ∫ ∞

−∞
dkze

−πinℏ2

mℏωc
k2
z

= − 1

βℏ

√
mℏωc

n
e

2πinµ
ℏωc

−iπ
4

∫ ∞

−βµ

dξe
2πin
βℏωc

ξ log
(
1 + e−ξ

)
, (19)

where we used the identity ∫ ∞

−∞
e−iαk2

zdkz = e−
iπ
4

√
π

α
. (20)

We now integrate by parts twice for the ξ integral :

In =
1

βℏ

√
mℏωc

n
e

2πinµ
ℏωc

−iπ
4

(
βℏωc

2πn

)2 ∫ ∞

−βµ

dξe
2πin
βℏωc

ξ eξ

(1 + eξ)2
+ boundary terms, (21)

where we have used
d2

dξ2
log
(
1 + e−ξ

)
=

eξ

(1 + eξ)2
, (22)

which is a function that is finite around ξ = 0 and vanishes exponentially elsewhere. Because we
are only interested in the 1/B oscillating behaviour of F , we can neglect the boundary terms in
Eq. (21). Indeed, at the ξ = ∞ boundary the terms vanish, and at the ξ = −βµ boundary the
oscillating factors exactly cancel. Finally, we set the lower boundary of the ξ integral to −∞.
This is a good approximation because βµ ≫ 1 and the dominating contribution to the ξ integral
comes from around ξ = 0. We calculate∫ ∞

−∞
dξe

2πin
βℏωc

ξ eξ

(1 + eξ)2
=

2π2n

βℏωc

1

sinh
(

2π2in
ℏωcβ

) . (23)

Plugging the expression for In into Eq. (15), we get

F1 =
(mℏωc)

3/2V

2π2ℏ3β

∞∑
n=1

cos
(

2πnµ
ℏωc

− π
4

)
n3/2 sinh

(
2π2n
ℏωcβ

) + non-oscillating terms. (24)
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5. Using
d

dB
cos

(
2πnµ

ℏωc
− π

4

)
=

2πnµ

ℏωc

1

B
sin

(
2πnµ

ℏωc
− π

4

)
, (25)

and assuming that all the other terms are independent of B, we obtain

1

B

∂

∂B

(
F

V

)
= −m3/2µ

√
ℏωc

B2πℏ3β

∞∑
n=1

sin
(

2πnµ
ℏωc

− π
4

)
√
n sinh

(
2π2n
ℏωcβ

) . (26)

6. The oscillating parts of the susceptibility, when plotted against 1/B, have frequencies of f =
nµmc
ℏe with n = 1, 2, . . . , and thus the overall period is

P =
ℏe
µmc

, (27)

corresponding to the n = 1 term. Note that in the strong field limit kBT ≲ ℏωc, the higher
harmonics (terms with n > 1) are negligible because of the sinh

(
2π2n/(ℏωcβ)

)
factor. Indeed,

for ℏωcβ = 1 we have sinh
(
4π2
)
/ sinh

(
2π2
)
∼ 108.

The following explains the significance of the de Haas-van Alphen effect:

Let us consider a plane perpendicular to kz in k-space. It intersects the Fermi surface with
a certain cross-section, which depends on the position of the plane. Let us denote Ae the
extremum of this cross-section. For free electrons, we have a spherical Fermi surface with radius
kF =

√
2mµ/ℏ, and a maximum of the cross-section for the plane at kz = 0 so that Ae = πk2F .

Rewriting the period in terms of Ae we obtain

P =
2πe

ℏc
1

Ae
. (28)

For a more general Fermi surface, there is a singularity in the density of state at the Fermi
energy every time a Landau level crosses the Fermi energy. Remarkably, Eq. (28) still holds in
the general case. For a more complicated Fermi surface, there can be several different extremal
cross-sections corresponding to different periods. The cross-sections may also change for different
orientations of B.

Thus, extremal Fermi surface areas can be detected through the de Haas-van Alphen effect.

7. In the ℏωc ≪ kBT limit, 1/(βℏωc) ≫ 1, and thus

sinh

(
2π2n

ℏωcβ

)
≈ 1

2
e

2π2n
ℏωcβ , (29)

so that the amplitude of the oscillation decays as e−
2π2

ℏωcβ .
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