SOLID STATE PHYSICS I1T Solution session 4 October 16th 2024

(A.) The de Haas-van Alphen effect:

1. For a grand canonical ensemble with chemical potential u, the partition function is defined as

7 = 26—5(57‘—#1\71)7 (1)

where 8 = 1/(kgT). Here, each microstate is labelled by ¢, and has total energy &; and total
particle number N;. Let us a now consider a system of free fermions,

H= ZEacha, (2)

Here « labels the different possible states in which each fermion can be with energy E,. The
microstates are described by the occupation number n,, € {0,1} of the different possible states
a. We then have & =) nqoFq and N; = Y n,. The partition function thus reads
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In our system, we have
h2k?
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E, i, = hwen + n=0,1,..., (4)

where each value with n # 0 occurs twice (due to the spin degeneracy including the Zeeman
effect) and the value with n = 0 occurs only once. In addition, for a given k, the degeneracy of
each Landau level is (see course notes)
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The partition function is thus

Z = H ﬁ (1 + e B(En k. —u))
k=

n=0
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where d(n) is the number of states with energy E,, 1. :

d(0)=D d(n) =2D forn >1. (7)
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The free energy (or more precisely the grand potential, as we work in the grand canonical
ensemble) reads

1 1 (B
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In the limit where k, takes continuous values, the expression in Eq. (6) is not so well behaved
(it can still be dealt with). However, for the free energy we obtain

F= 7%% /O:O dk., zﬂ: d(n) log (1 + e*mEn‘kfﬂ))
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Note that we use this notation so that the function f is independent of the magnetic field B.

2. By multiplying by g(x) and by integrating x from 0 to co on both sides of

Y sa-my= Y e -
we obtain
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where we have used the fact that g(x) is real. By equaling Eq. (12) to Eq. (13) we obtain the
desired relation.

3. We can use the Poisson’s formula for F' with g(z) = f(u — fw.z) and obtain

o] 0 [eS)
F = hw, l/ f(p — hwez)dx + Z 2Re/ flp— hwex)e®™ ™ dx | = Fy + F. (14)
0 et 0

We identify
0 mV >
Fy = hw, ; def(p — hwez), and F; = Bn2i2 Rengz1 I,, (15)
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where

I, = fhwc/ dx/ dk, log
0 —00

Using the change of variable y = hw.x we have

Rt [ 2 Ty = / T dyfu-), (17)

which is independent of B as B is not involved in f (u — y)

14 S )] e, (16)

4. Let us use the change of variable z — & = 8 (
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Because we are in the limit fw, < pand 1 < Bu, we first set the lower boundary of the £ integral

to —Bp. Indeed, only small values of k. contribute significantly to the k. integral because of the
27,2
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where we used the identity
oo .
/ ek gk, = e~ F, | T (20)
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We now integrate by parts twice for the £ integral :

In
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where we have used
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which is a function that is finite around £ = 0 and vanishes exponentially elsewhere. Because we
are only interested in the 1/B oscillating behaviour of F', we can neglect the boundary terms in
Eq. (21). Indeed, at the £ = co boundary the terms vanish, and at the £ = —fBu boundary the
oscillating factors exactly cancel. Finally, we set the lower boundary of the £ integral to —oo.
This is a good approximation because Sy > 1 and the dominating contribution to the £ integral
comes from around £ = 0. We calculate
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Plugging the expression for I, into Eq. (15), we get

(mhiw,)?2V & cos(zhwc" — %)
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F = + non-oscillating terms. (24)
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5. Using
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and assuming that all the other terms are independent of B, we obtain
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6. The oscillating parts of the susceptibility, when plotted against 1/B, have frequencies of f =

MRS with n = 1,2,. .., and thus the overall period is
I
p_ e (27)
pme

corresponding to the n = 1 term. Note that in the strong field limit kT < hw., the higher
harmonics (terms with n > 1) are negligible because of the sinh(272n/(fiw/3)) factor. Indeed,
for fiwe3 = 1 we have sinh(47?)/sinh(27%) ~ 105.

The following explains the significance of the de Haas-van Alphen effect:

Let us consider a plane perpendicular to k, in k-space. It intersects the Fermi surface with
a certain cross-section, which depends on the position of the plane. Let us denote A. the
extremum of this cross-section. For free electrons, we have a spherical Fermi surface with radius
kr = /2mp/h, and a maximum of the cross-section for the plane at k, = 0 so that A, = wkZ.
Rewriting the period in terms of A, we obtain

2me 1
P= e A (28)
For a more general Fermi surface, there is a singularity in the density of state at the Fermi
energy every time a Landau level crosses the Fermi energy. Remarkably, Eq. (28) still holds in
the general case. For a more complicated Fermi surface, there can be several different extremal
cross-sections corresponding to different periods. The cross-sections may also change for different
orientations of B.

Thus, extremal Fermi surface areas can be detected through the de Haas-van Alphen effect.

7. In the hw. < kpT limit, 1/(Bhw.) > 1, and thus

272 1 242n
Sinh(ﬁlg) ~ 562%3, (29)

7\,2
so that the amplitude of the oscillation decays as e~ e .



