A simple semiconductor and the formation of excitons

Band Structure

We consider the following Hamiltonian:

$$H = -t\sum_{j=1}^{N} \left(c_j^{\dagger} c_{j+1} + c_{j+1}^{\dagger} c_j \right) + v \sum_{j=1}^{N} (-1)^j n_j . \tag{1}$$

(a) Notice that $(-1)^j = e^{i\pi j}$, so by taking the Fourier transformation $c_j = \frac{1}{\sqrt{N}} \sum_{k \in (-\pi,\pi]} e^{-ikj} c_k$ where N is the total number of sites, we get

$$\begin{split} H &= -2t \sum_{k} \cos(k) c_{k}^{\dagger} c_{k} + \frac{v}{N} \sum_{k,k'} \underbrace{\sum_{j} e^{i(k-k'+\pi)j}}_{\Rightarrow N \delta_{k-k'+\pi}} c_{k}^{\dagger} c_{k'} \\ &= -2t \sum_{k \in (-\pi,\pi]} \cos(k) c_{k}^{\dagger} c_{k} + v \sum_{k \in (-\pi,\pi]} c_{k}^{\dagger} c_{k+\pi} \\ &= -2t \sum_{\# k} \cos(k) c_{k}^{\dagger} c_{k} + 2t \sum_{\# k} \cos(k) c_{k+\pi}^{\dagger} c_{k+\pi} + v \sum_{\# k} (c_{k}^{\dagger} c_{k+\pi} + \text{h.c.}) \\ &= \sum_{\# k} \bar{c}_{k}^{\dagger} H(k) \bar{c}_{k} \; , \end{split}$$
 (2)

where

$$H(k) = \begin{pmatrix} -2t\cos(k) & v \\ v & 2t\cos(k) \end{pmatrix}$$
 (3)

(b) According to your knowledge of linear algebra, choose the technique you like (e.g. multiply directly UHU^{\dagger} to get the result or solve the eigenvalue problem first) and you should find that

$$u_k = \sin(\theta), v_k = \cos(\theta)$$
 (4)

where the parameter θ is determined by

$$\tan(2\theta) = -\frac{v}{2t\cos(k)}. (5)$$

The band gap Δ is calculated from the two eigenvalues $E_{\pm}(k)$ of H(k):

$$E_{\pm}(k) = \pm \sqrt{v^2 + 4t^2 \cos^2(k)} \equiv \pm E_k.$$
 (6)

from which we conclude that $\Delta = 2|v|$.

(c) It is straightforward to see that

$$H = \sum_{\#k} \bar{c}_k^{\dagger} H(k) \bar{c}_k = \sum_{\#k} \bar{c}_k^{\dagger} U^{\dagger} \underbrace{UH(k)U^{\dagger}}_{\left(E_{-}(k) \quad 0 \atop 0 \quad E_{+}(k)\right)} U\bar{c}_k$$

$$= \sum_{\#k} \left[-E_k a_k^{\dagger} a_k + E_k b_k^{\dagger} b_k \right]$$

$$(7)$$

(d) At half-filling, the system reaches its lowest energy when the lower band is fully occupied while the upper band has no fermion, i.e.

$$|\Omega\rangle = \prod_{\#k} a_k^{\dagger} |0\rangle \tag{8}$$

Wigner crystallization

- (a) Calculate the charge density ρ and the electric field $\mathbf{E}_{p}(r)$.
 - charge density ρ :

$$\rho = \frac{e}{V_s} = \frac{e}{\frac{4}{3}\pi R^3} = \frac{e}{\frac{4}{3}\pi r_s^3 a_B^3} = \frac{3e}{4\pi r_s^3 a_B^3}$$
(9)

- Electric field $\mathbf{E}_p(r)$
 - Within the sphere:

$$4\pi Q = \oint \mathbf{E} \cdot d\mathbf{A}$$

$$\Rightarrow 4\pi \times \rho \times \frac{4}{3}\pi r^3 = E_p(r) \times 4\pi r^2$$

$$\Rightarrow E_p(r) = \frac{er}{r_s^3 a_B^3}$$
(10)

- Outside the sphere:

$$4\pi e = E_p(r) \times 4\pi r^2$$

$$\Rightarrow E_p(r) = \frac{e}{r^2}.$$
(11)

In the equations (10) and (11), we used the fact that the electric field is isotropic and the area of a sphere of radius r is $4\pi r^2$.

- (b) Compute the potential $V_p(r)$ and make it continuos.
 - Inside the sphere:

$$V_p(r) = -\int \frac{er}{r_s^3 a_B^3} dr = -\frac{er^2}{2r_s^3 a_B^3} + C_1$$
 (12)

• Outside the sphere:

$$V_p(r) = -\int \frac{e}{r^2} dr = \frac{e}{r} + C_2$$
 (13)

Now if we choose the convention that $V_p(+\infty)=0$ and require $V_p(r)$ is continuous at the sphere, then we can get

$$V_p(r) = \begin{cases} \frac{e}{2r_s a_B} \left(3 - \frac{r^2}{(r_s a_B)^2} \right), & r \le r_s a_B \\ \frac{e}{r}, & r > r_s a_B. \end{cases}$$
 (14)

(c) Compute the self-energy of the charged background.

$$U_{pp} = \frac{1}{2} \int_{\text{within sphere}} d^3 \mathbf{r} \rho(\mathbf{r}) V_p(\mathbf{r})$$

$$= 2\pi \int_0^{r_s a_B} dr r^2 \frac{3e}{4\pi r_s^3 a_B^3} \times \frac{e}{2r_s a_B} \left(3 - \frac{r^2}{(r_s a_B)^2} \right)$$

$$= \frac{3e^2}{5r_s a_B}$$
(15)

(d) Compute the potential energy between the background and the electron.

$$U_{ep} = \int_{\text{within sphere}} d^{3}\mathbf{r}\rho(\mathbf{r})V_{e}(\mathbf{r})$$

$$= 4\pi \int_{0}^{r_{s}a_{B}} dr r^{2} \frac{3e}{4\pi r_{s}^{3}a_{B}^{3}} \times \frac{-e}{r}$$

$$= -\frac{3e^{2}}{2r_{s}a_{B}} = -eV_{p}(r=0)$$
(16)

(e) Kinetic energy and the total energy for an electron in the Wigner crystal.

According to the basic quantum machanics, the wave vector $k = \frac{2\pi}{\lambda}$ and the momentum $p = \hbar k$. So for the electron, its kinetic energy is

$$E_k = \frac{\hbar^2 k^2}{2m} = \frac{2\pi^2 \hbar^2}{m\lambda^2} \approx \frac{2\pi^2 \hbar^2}{m(r_s a_B)^2}.$$
 (17)

Then the total energy is

$$E_{\text{Wigner}} = E_k + U_{pp} + U_{ep} = \frac{2\pi^2 \hbar^2}{m_e (r_s a_B)^2} - \frac{9e^2}{10r_s a_B}$$
 (18)

(f) Since $n(E) = \frac{3}{2\varepsilon_F^{3/2}} E^{1/2}$, we can calculate the average energy per electron:

$$E_{\text{Fermi}} = \int_{0}^{\varepsilon_F} n(E)E dE$$

$$= \frac{3}{2\varepsilon_F^{3/2}} \int_{0}^{\varepsilon_F} E^{3/2} dE.$$

$$= \frac{3}{5}\varepsilon_F$$
(19)

Then let's see when the energy of electron in Wigner crystall becomes smaller than that in Fermi sea. Notice that

$$E_{\text{Wigner}} - E_{\text{Fermi}} = \frac{2\pi^2 \hbar^2}{m_e (r_s a_B)^2} - \frac{9e^2}{10r_s a_B} - \frac{3}{5} \varepsilon_F$$

$$= \frac{me^4}{\hbar^2 r_s} \left(\frac{2\pi^2 - \frac{3}{10}\alpha^2}{r_s} - \frac{9}{10}\right)$$
(20)

where $\alpha = (\frac{9\pi}{4})^{1/3}$. So when $r_s \gtrsim 20$, $E_{\text{Wigner}} - E_{\text{Fermi}} < 0$, which means there Wigner crystal has a lower energy.