
Solid state physics III Exercise session 2 Oct. 2nd 2024

A simple semiconductor and the formation of excitons

Band Structure

We consider the following Hamiltonian:

H = −t

N∑
j=1

(
c†jcj+1 + c†j+1cj

)
+ v

N∑
j=1

(−1)jnj . (1)

(a) Notice that (−1)j = eiπj , so by taking the Fourier transformation cj = 1√
N

∑
k∈(−π,π] e

−ikjck
where N is the total number of sites, we get

H = −2t
∑
k

cos(k)c†kck +
v

N

∑
k,k′

∑
j

ei(k−k′+π)j

︸ ︷︷ ︸
⇒Nδk−k′+π

c†kck′

= −2t
∑

k∈(−π,π]

cos(k)c†kck + v
∑

k∈(−π,π]

c†kck+π

= −2t
∑
#k

cos(k)c†kck + 2t
∑
#k

cos(k)c†k+πck+π + v
∑
#k

(c†kck+π + h.c.)

=
∑
#k

c̄†kH(k)c̄k ,

(2)

where

H(k) =

(
−2t cos(k) v

v 2t cos(k)

)
(3)

(b) According to your knowledge of linear algebra, choose the technique you like (e.g. multiply directly
UHU† to get the result or solve the eigenvalue problem first) and you should find that

uk = sin(θ), vk = cos(θ) (4)

where the parameter θ is determined by

tan(2θ) = − v

2t cos(k)
. (5)

The band gap ∆ is calculated from the two eigenvalues E±(k) of H(k):

E±(k) = ±
√
v2 + 4t2 cos2(k) ≡ ±Ek. (6)

from which we conclude that ∆ = 2|v|.
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(c) It is straightforward to see that

H =
∑
#k

c̄†kH(k)c̄k =
∑
#k

c̄†kU
† UH(k)U†︸ ︷︷ ︸E−(k) 0

0 E+(k)


Uc̄k

=
∑
#k

[
−Eka

†
kak + Ekb

†
kbk

] (7)

(d) At half-filling, the system reaches its lowest energy when the lower band is fully occupied while
the upper band has no fermion, i.e.

|Ω⟩ =
∏
#k

a†k |0⟩ (8)

Wigner crystallization

(a) Calculate the charge density ρ and the electric field Ep(r).

• charge density ρ:

ρ =
e

Vs
=

e
4
3πR

3
=

e
4
3πr

3
sa

3
B

=
3e

4πr3sa
3
B

(9)

• Electric field Ep(r)

– Within the sphere:

4πQ =

∮
E · dA

⇒ 4π × ρ× 4

3
πr3 = Ep(r)× 4πr2

⇒ Ep(r) =
er

r3sa
3
B

(10)

– Outside the sphere:

4πe = Ep(r)× 4πr2

⇒ Ep(r) =
e

r2
.

(11)

In the equations (10) and (11), we used the fact that the electric field is isotropic and the
area of a sphere of radius r is 4πr2.

(b) Compute the potential Vp(r) and make it continuos.

• Inside the sphere:

Vp(r) = −
∫

er

r3sa
3
B

dr = − er2

2r3sa
3
B

+ C1 (12)

• Outside the sphere:

Vp(r) = −
∫

e

r2
dr =

e

r
+ C2 (13)

Now if we choose the convention that Vp(+∞) = 0 and require Vp(r) is continous at the sphere,
then we can get

Vp(r) =

{
e

2rsaB

(
3− r2

(rsaB)2

)
, r ≤ rsaB

e
r , r > rsaB .

(14)
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(c) Compute the self-energy of the charged background.

Upp =
1

2

∫
within sphere

d3rρ(r)Vp(r)

= 2π

∫ rsaB

0

drr2
3e

4πr3sa
3
B

× e

2rsaB

(
3− r2

(rsaB)2

)
=

3e2

5rsaB

(15)

(d) Compute the potential energy between the background and the electron.

Uep =

∫
within sphere

d3rρ(r)Ve(r)

= 4π

∫ rsaB

0

drr2
3e

4πr3sa
3
B

× −e

r

= − 3e2

2rsaB
= −eVp(r = 0)

(16)

(e) Kinetic energy and the total energy for an electron in the Wigner crystal.

According to the basic quantum machanics, the wave vector k = 2π
λ and the momentum p = ℏk.

So for the electron, its kinetic energy is

Ek =
ℏ2k2

2m
=

2π2ℏ2

mλ2
≈ 2π2ℏ2

m(rsaB)2
. (17)

Then the total energy is

EWigner = Ek + Upp + Uep =
2π2ℏ2

me(rsaB)2
− 9e2

10rsaB
(18)

(f) Since n(E) = 3

2ε
3/2
F

E1/2, we can calculate the average energy per electron:

EFermi =

∫ εF

0

n(E)EdE

=
3

2ε
3/2
F

∫ εF

0

E3/2dE

=
3

5
εF

. (19)

Then let’s see when the energy of electron in Wigner crystall becomes smaller than that in Fermi
sea. Notice that

EWigner − EFermi =
2π2ℏ2

me(rsaB)2
− 9e2

10rsaB
− 3

5
εF

=
me4

ℏ2rs
(
2π2 − 3

10α
2

rs
− 9

10
)

(20)

where α = ( 9π4 )1/3. So when rs ⪆ 20, EWigner − EFermi < 0, which means there Wigner crystal
has a lower energy.
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