
Solid state physics III Exercise session 1 Sept. 18th 2024

Second quantization for observables

(A.)

1. Using the form given in the exercise we can write

Hkin =
∑
k,k′

σ,σ′

⟨φk′,σ′ | p̂2

2m
|φk,σ⟩ c†k′,σ′ck,σ (1)

The matrix elements can be written as

⟨φk′,σ′ | p̂2 |φk,σ⟩ = −ℏ2
∑
s

∫
drφ∗

k′,σ′(r, s)∆φk,σ(r, s)

= −ℏ2

Ω

∑
s

∫
dre−ik′r∆eikrδσ′,sδσ,s

=
ℏ2

Ω
k2

∑
s

∫
dre−ik′reikrδσ′,sδσ,s =

ℏ2

Ω
k2Ωδk′,kδσ′,σ

(2)

where we used that the plane waves states are orthogonal to each other (
∫
drei(k−k′)r = Ωδk,k′).

Hkin =
∑
k,k′

σ,σ′

ℏ2k2

2m
δk′,kδσ′,σc

†
k′,σ′ck,σ =

∑
k,σ

ℏ2k2

2m
c†k,σck,σ (3)

Note that c†k,σck,σ just gives the number of electrons in the |φk,σ⟩ state. We see that in the
plane wave basis Hkin is diagonal, or in other words it doesn’t change the electron state. This
is because the plane waves are eigenstates of the momentum operator.

2.

Hext =
∑
k,k′

σ,σ′

⟨φk′,σ′ |U(r̂) |φk,σ⟩ c†k′,σ′ck,σ
(4)

where

⟨φk′,σ′ |U(r̂) |φk,σ⟩ =
1

Ω

∑
s

∫
dre−ik′rU(r)eikrδσ′,sδσ,s

=
1

Ω
δσ,σ′

∫
drU(r)ei(k−k′)r = δσ,σ′U(k′ − k).

(5)
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As a result we get

Hext =
∑

k,k′,σ

U(k′ − k)c†k′,σck,σ. (6)

With a change of variables q = k′ − k we get

Hext =
∑
k,q,σ

U(q)c†k+q,σck,σ (7)

We see that the external potential can change the momentum of an electron, but the possible
values of the momentum change are related to nonzero Fourier components of the external
potential. Recall from your studies about Bragg scattering on the periodic potential of the
localized positive ions. There the potential had nonzero Fourier components only for reciprocal
lattice vectors, therefore the momentum of the electrons could be changed by a reciprocal lattice
vector.

3. The second quantized form of Hint reads as

Hint =
1

2

∑
k1,k2,k3,k4
σ1,σ2,σ3,σ4

⟨φk1,σ1 ⊗ φk2,σ2 |V (r̂1 − r̂2) |φk4,σ4 ⊗ φk3,σ3⟩ c
†
k1,σ1

c†k2,σ2
ck3,σ3

ck4,σ4 (8)

where

⟨φk1,σ1
⊗ φk2,σ2

|V (r̂ − r̂′) |φk4,σ4
⊗ φk3,σ3

⟩

=
∑
s

∑
s′

1

Ω2

∫
dr

∫
dr′e−ik1re−ik2r

′ e2

|r − r′|
eik4reik3r

′
δσ1,sδσ2,s′δσ4,sδσ3,s′

(9)

Here we change the r integral variable to R = r−r′. The integral in the R, r′ variables read as

⟨φk1,σ1 ⊗ φk2,σ2 |V (r̂ − r̂′) |φk4,σ4 ⊗ φk3,σ3⟩

=
1

Ω2

∫
dR

∫
dr′ ei(k4−k1+k3−k2)r

′
ei(k4−k1)R

e2

|R|
δσ1,σ4δσ2,σ3

=
1

Ω
δσ1,σ4δσ2,σ3δk1+k2,k3+k4

4πe2

|k4 − k1|2

(10)

Putting this back to the expression of Hint we get

Hint =
1

2Ω

∑
k1,k3,k4
σ3,σ4

4πe2

|k4 − k1|2
c†k1,σ4

c†k3+k4−k1,σ3
ck3,σ3

ck4,σ4 (11)

By introducing a new variable q = k1 − k4 instead of k1, and renaming the variables k3 and k4

we get

Hint =
1

2Ω

∑
q,k,k′

σ,σ′

4πe2

|q|2
c†k′+q,σ′c

†
k−q,σck,σck′,σ′

(12)
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We see that the total momentum is conserved by Hint, the total momentum of the annihilated
electrons is equal to the total momentum of the created electrons. This is because the Coulomb
interaction is translational invariant, it only depends on r − r′.

One term in the expression of Hint describes the scattering process where two electrons with
momenta k and k′ interact and exchange some momentum q, so after the interaction they will
have k + q and k′ − q momenta. The electron spins are untouched during the process.

Bonus: The integral
∫
dreiqr 1

r cannot be carried out immediately, as it is not absolute conver-
gent. One needs to introduce a reguralization term. So we have

I(q, ε) =

∫
dreiqr−ε|r| 1

|r| (13)

This can be calculated in spherical coordinates choosing the q vector to be in the z direction.
The value of the integral we are interested is then given by lim

ε→0
I(q, ε).

(B.)

A first approach : Let’s start by noting that

⟨φk1,σ1 |φk2,σ2⟩ =

∫
d3r

∑
σ

⟨φk1,σ1 |r, σ⟩⟨r, σ|φk2,σ2⟩

=
1

Ω

∫
d3r

∑
σ

e−ik1·rη∗σ1
(σ)eik2·rησ2

(σ)

=
1

Ω

∫
d3rei(k2−k1)·r︸ ︷︷ ︸

=Ωδk1,k2

∑
σ

η∗σ1
(σ)ησ2

(σ)︸ ︷︷ ︸
=δσ,σ1

δσ,σ2

= δk1,k2
δσ1,σ2

So, from the definition of the spin operators we get

⟨φk1,σ1
|Sx

1 |φk2,σ2
⟩ =

1

2
⟨φk1,σ1

|φk2,−σ2
⟩

=
1

2
δk1,k2

δσ1,−σ2

⟨φk1,σ1
|Sy

1 |φk2,σ2
⟩ = iσ2⟨φk1,σ1

|φk2,−σ2
⟩

= iσ2δk1,k2
δσ1,−σ2

⟨φk1,σ1
|Sz

1 |φk2,σ2
⟩ = σ2⟨φk1,σ1

|φk2,σ2
⟩

= σ2δk1,k2
δσ1,σ2

and thus

Ŝx =
∑
k1,k2

∑
σ1,σ2

⟨φk1,σ1
|Ŝx

1 |φk2,σ2
⟩c†k1,σ1

ck2,σ2

=
1

2

∑
k

∑
σ

c†k,σck,−σ

=
1

2

∑
k

(
c†k,↑ck,↓ + c†k,↓ck,↑

)
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Ŝy =
∑
k1,k2

∑
σ1,σ2

⟨φk1,σ1
|Ŝy

1 |φk2,σ2
⟩c†k1,σ1

ck2,σ2

= −i
∑
k

∑
σ

σc†k,σck,−σ

=
i

2

∑
k

(
c†k,↓ck,↑ − c†k,↑ck,↓

)

Ŝz =
∑
k1,k2

∑
σ1,σ2

⟨φk1,σ1
|Ŝz

1 |φk2,σ2
⟩c†k1,σ1

ck2,σ2

=
∑
k

∑
σ

σc†k,σck,σ

=
1

2

∑
k

(
c†k,↑ck,↑ − c†k,↓ck,↓

)
Another approach: We want to determine

Ŝ =
∑
k1,k2

∑
σ1,σ2

⟨φk1,σ1
|Ŝ1|φk2,σ2

⟩c†k1,σ1
ck2,σ2

Therefore, it is necessary to evaluate

⟨φk1,σ1
|Ŝ1|φk2,σ2

⟩ =

∫
d3r

∑
σ

⟨φk1,σ1
|r, σ⟩⟨r, σ|Ŝ1|φk2,σ2

⟩

=
1

Ω

∫
d3r

∑
σ

e−ik1·rη∗σ1
(σ)Ŝ1e

ik2·rησ2
(σ)

=
1

Ω

∫
d3rei(k2−k1)·r︸ ︷︷ ︸

=Ωδk1,k2

∑
σ

η∗σ1
(σ)Ŝ1ησ2

(σ)

Consider the spin part

η∗σ1
(σ)Ŝx

1 ησ2
(σ) =

1

2
η∗σ1

(σ)η−σ2(σ)

=
1

2
δσ,σ1

δσ,−σ2

η∗σ1
(σ)Ŝy

1ησ2(σ) = iσ2η
∗
σ1
(σ)η−σ2(σ)

= iσ2δσ,σ1δσ,−σ2

η∗σ1
(σ)Ŝz

1ησ2
(σ) = σ2η

∗
σ1
(σ)ησ2

(σ)

= σ2δσ,σ1
δσ,σ2

4



Solid state physics III exercise session 1 Sept. 18th 2024

so

⟨φk1,σ1
|Ŝx

1 |φk2,σ2
⟩ = δk1,k2

∑
σ

1

2
δσ,σ1

δσ,−σ2

=
1

2
δk1,k2δσ1,−σ2

⟨φk1,σ1
|Ŝy

1 |φk2,σ2
⟩ = δk1,k2

∑
σ

iσ2δσ,σ1
δσ,−σ2

= iσ2δk1,k2
δσ1,−σ2

⟨φk1,σ1 |Ŝz
1 |φk2,σ2⟩ = δk1,k2

∑
σ

σ2δσ,σ1δσ,σ2

= σ2δk1,k2δσ1,σ2

and finally

Ŝx =
∑
k1,k2

∑
σ1,σ2

⟨φk1,σ1
|Ŝx

1 |φk2,σ2
⟩c†k1,σ1

ck2,σ2

=
1

2

∑
k

∑
σ

c†k,σck,−σ

=
1

2

∑
k

(
c†k,↑ck,↓ + c†k,↓ck,↑

)
Ŝy =

∑
k1,k2

∑
σ1,σ2

⟨φk1,σ1
|Ŝy

1 |φk2,σ2
⟩c†k1,σ1

ck2,σ2

= −i
∑
k

∑
σ

σc†k,σck,−σ

=
i

2

∑
k

(
c†k,↓ck,↑ − c†k,↑ck,↓

)
Ŝz =

∑
k1,k2

∑
σ1,σ2

⟨φk1,σ1 |Ŝz
1 |φk2,σ2⟩c

†
k1,σ1

ck2,σ2

=
∑
k

∑
σ

σc†k,σck,σ

=
1

2

∑
k

(
c†k,↑ck,↑ − c†k,↓ck,↓

)

Tight-binding

(C.) The tight-binding model on a square lattice.

1. The simplest way is to start by reversing the relationship, that is, writing the N states |j⟩
according to the N states |k⟩. Let’s not forget that k belongs to the first Brillouin zone, that is,
k =

(
− π

a + 2π
L nx

)
ex +

(
− π

a + 2π
L ny

)
ey, with nx = 1...La et ny = 1...La , where L is the length

of the lattice so that L2 = Na2. We have (simple inversion of Fourier transform):

|i⟩ = 1√
N

∑
k

eik·ri |k⟩ (14)
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It is verified that:

|k⟩ = 1√
N

∑
i

e−ik·ri
( 1√

N

∑
k′

eik
′·ri |k′⟩

)
=

1

N

∑
k′

(∑
i

e−i(k−k′)·ri
)

︸ ︷︷ ︸
=Nδk,k′

|k′⟩ = |k⟩. (15)

Let’s use Eq. (14) to rewrite the Hamiltonian.

H = −t
∑
⟨i,j⟩

(
|i⟩⟨j|+ |j⟩⟨i|

)
= −t

∑
i

( ∑
j , neighbours of i

|i⟩⟨j|
)

= − t

N

∑
k′,k

∑
i

( ∑
j , neighbours of i

ei(k·ri−k′·rj)
)
|k⟩⟨k′|

= − t

N

∑
k′,k

η(k′)
(∑

i

ei(k−k′)·ri
)

︸ ︷︷ ︸
=Nδk,k′

|k⟩⟨k′|, (16)

where η(k′) = eiak
′·ex + e−iak′·ex + eiak

′·ey + e−iak′·ey = 2(cos(k′xa) + cos
(
k′ya

)
).

We then obtain:
H =

∑
k

Ek|k⟩⟨k|,

with Ek = −2t(cos(kxa) + cos(kya)).

2. Taking inspiration from the previous question, we can introduce the creation operator:

c†k,σ =
1√
N

∑
i

e−ik·ric†i,σ. (17)

By taking the hermitian conjugate, one must necessarily have

ck,σ =
1√
N

∑
i

eik·rici,σ. (18)

To be acceptable, these operators must follow the fermionic anti-commutations relations:{
ck,σ, c

†
k′,σ′

}
=

1

N

∑
i,j

ei(k·ri−k′·rj)
{
ci,σ, c

†
j,σ′

}︸ ︷︷ ︸
=δi,jδσ,σ′

=
1

N

∑
i

ei(k−k′)·ri

︸ ︷︷ ︸
=Nδk,k′

δσ,σ′ = δk,k′δσ,σ′ . (19)

And also,
{
c†k′,σ′ , c

†
k,σ

}
=

{
ck′,σ′ , ck,σ

}
= 0.

We then repeat the same calculations as in Eq. (16) to get:

H = −t
∑

⟨i,j⟩,σ

(
c†i,σcj,σ + c†j,σci,σ

)
=

∑
k,σ

Ekc†k,σck,σ.
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