SOLID STATE PHYSICS 111 Exercise session 1 Sept. 18th 2024

Second quantization for observables

(A.)

1. Using the form given in the exercise we can write
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The matrix elements can be written as
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where we used that the plane waves states are orthogonal to each other ( [ dreitk—kK)r — Qg )-
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Note that c;rc_gck , just gives the number of electrons in the |k ,) state. We see that in the
plane wave basis Hyi, is diagonal, or in other words it doesn’t change the electron state. This
is because the plane waves are eigenstates of the momentum operator.
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As a result we get

ext = Z U Ck/ Ck,a' (6)
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With a change of variables ¢ = k' — k we get

Heyy = Z U(q)cltﬂ»q,ack,a (7)
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We see that the external potential can change the momentum of an electron, but the possible
values of the momentum change are related to nonzero Fourier components of the external
potential. Recall from your studies about Bragg scattering on the periodic potential of the
localized positive ions. There the potential had nonzero Fourier components only for reciprocal
lattice vectors, therefore the momentum of the electrons could be changed by a reciprocal lattice
vector.

3. The second quantized form of Hj, reads as
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Here we change the r integral variable to R = 7 —r’. The integral in the R, r’ variables read as
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Putting this back to the expression of Hi,t we get
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By introducing a new variable g = k1 — k4 instead of k1, and renaming the variables k3 and k4

we get
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We see that the total momentum is conserved by Hi,, the total momentum of the annihilated
electrons is equal to the total momentum of the created electrons. This is because the Coulomb
interaction is translational invariant, it only depends on r — 7',

One term in the expression of Hj, describes the scattering process where two electrons with
momenta k and k’ interact and exchange some momentum g, so after the interaction they will
have k + q and k' — g momenta. The electron spins are untouched during the process.

Bonus: The integral [ dreiq"% cannot be carried out immediately, as it is not absolute conver-
gent. One needs to introduce a reguralization term. So we have

. 1
I(q,e) = /drelqr*slr‘m (13)

This can be calculated in spherical coordinates choosing the g vector to be in the z direction.
The value of the integral we are interested is then given by liII(l) I(q,e).
E—r

(B.)

A first approach :  Let’s start by noting that
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So, from the definition of the spin operators we get

1
<90k1,01‘5?|90k‘2702> = §<90k1701|90k27—02>
1
= §6k17k26017—02
<90k1,01‘5%|80k2702> = i0—2<50k1701|90k2,*02>
= ia25k17k26017—02
<90k1701|‘912|90k‘2702> = U2<<pk1>01|90k‘2702>

025191,’62 601,02

and thus

S5 = Z Z<<pk1,01‘Sflspk2702>c;rchalck2702

ki,kz 01,02

1
) DD Chothio
k o

1
= 32 (CL,TC’W + C:Te,ﬂw)
k



SOLID STATE PHYSICS III exercise session 1 Sept. 18th 2024
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Another approach: We want to determine
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Therefore, it is necessary to evaluate
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Tight-binding

(C.) The tight-binding model on a square lattice.

1. The simplest way is to start by reversing the relationship, that is, writing the N states |j)
according to the N states |k). Let’s not forget that k belongs to the first Brillouin zone, that is,
k= (— ~+ 2T’Tn@.)ex + ( -4 2T”ny)ey, with n, = 1% et n, = 1...%, where L is the length

a
of the lattice so that L? = Na?. We have (simple inversion of Fourier transform):

; 7i eik-ri
)= 7 e (14)
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It is verified that:

:NSk,k’

Let’s use Eq. (14) to rewrite the Hamiltonian.

H——tz Y+ 19)(il)
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% j , neighbours of 4
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where 7(k') = elokex 4 giaklex 4 giakey 4 oiakhey — 9(cos(kla) + cos(k)a)).

‘We then obtain:
H=> &lk)k
k

with & = —2t(cos(kza) + cos(kya)).

2. Taking inspiration from the previous question, we can introduce the creation operator:
cLU = \/% XZ: e_ik'r‘czg. (17)
By taking the hermitian conjugate, one must necessarily have
1 ikery
Cko = ﬁ ; e Tic 4. (18)
To be acceptable, these operators must follow the fermionic anti-commutations relations:
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And also, {CL,\U,,CLU} = {ckf,(,/,ckﬁ} =0.
We then repeat the same calculations as in Eq. (16) to get:

H=—t Z ¢ ch -+ cj - Ci., 0 = ngclt,ack;a'
(i,5),0



