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(A.) The antiferromagnetic ground state
The solution is in the course notes. We copy it here. The vaccuum for the bosons a†, denoted by

|0〉, is the Néel state. This is not the ground state! The ground state obeys αk |GS〉 = 0. However(
ukak + vka

†
−k

)
|0〉 = vka

†
−k |0〉 6= 0.

It can be shown that the ground state is:

|GS〉 =
∏
l

′ 1

ul
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(
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a†l a
†
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)
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where
∏′

l means that we do the product on half of the wave vectors, such that only one of each
pair l and −l is included. In order to ensure this, it must be established that:

αk |GS〉 = 0

with αk = ukak + vka
†
−k.
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where the sum starts at n = 1 because the term n = 0 gives 0 as ak |0〉 = 0. In addition, we have

[ak, (a
†
k)n] = n(a†k)n−1

Let us show it by induction. This is true for n = 1 since [ak, a
†
k] = 1. Suppose this is true at the

order n− 1. It follows:

[ak, (a
†
k)n] = [ak, (a

†
k)n−1]a†k + (a†k)n−1[ak, a

†
k]

= (n− 1)(a†k)n−2a†k + (a†k)n−1

= n(a†k)n−1

Therefore,

ak(a†k)n = n(a†k)n−1 + (a†k)nak︸ ︷︷ ︸
gives 0 on the vaccuum

and we get:
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Finally:

ukak |GS〉 = −vka†−k |GS〉

and thus,

αk |GS〉 = 0.

Lastly, let us check that |F 〉 is normalized.

〈GS|GS〉 = 〈0|
∏
k

′ 1

u2k

∑
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=
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=
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1

1− ( vkuk
)2

= 1.

(B.) Correction to the magnetization in the antiferromagnetic case
Consider the dispersion relation

ωk = 6JS
√

1− γ2k, γk =
1

3
(cos kx + cos ky + cos kz)

1. ωk = 0 ⇔ |γk| = 1 ⇔ kx = ky = kz = 0, π. For k→ 0

cos kx ' 1− 1

2
k2x

⇒ ωk ' 6JS

√
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9
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2
k2)2

' 6JS
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√
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k2

= 2
√

3JS|k|

For q = (π, π, π) et k→ 0

cos(qx + kx) = − cos(kx)

⇒ γq+k = −γk
⇒ ωq+k = ωk

' 2
√

3JS|k|

2. We must evaluate

δM (2) = − 1

N

∑
k

u2k + v2k
e

ωk
T − 1
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In the thermodynamic limit, k becomes a continuous variable. We can therefore replace the sum
by an integral on the first Brillouin zone (−π < kx, ky, kz ≤ π):

δM (2) ' − 1

(2π)3

∫
u2k + v2k
e

ωk
T − 1

d3k

But ωq+k = ωk for q = (±π,±π,±π)

⇒ u2q+k = u2k and v2q+k = v2k

We can therefore restrict the integration domain to D = [−π, π] × [−π, π] × [−π/2, π/2] (one
half of the cube of side π):

δM (2) ' − 2

(2π)3

∫
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e
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For low temperatures (T � JS), the Bose-Einstein distribution diverges when ωk = 0. For
the considered integration domain ωk = 0 only at k = 0. We thus infer that the terms that
dominate in the integrals are those with small wave vectors. To capture the dependency in T
we can then use spherical coordinates and integrate on a sphere centered in k = 0, with radius
δ.
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Using the expansion of ωk for k→ 0 we have

u2k + v2k =
6JS
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and
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We use the change of variable p = 2
√
3JS
T k
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3. Likewise,
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and

cAF
magnetic =
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∂T

∼
(
T

JS

)3
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