SOLID STATE PHYSICS 3 Exercise session 10 Dec. 12th, 2024

(A.) The antiferromagnetic ground state
The solution is in the course notes. We copy it here. The vaccuum for the bosons af, denoted by
|0}, is the Néel state. This is not the ground state! The ground state obeys ay |GS) = 0. However

(ukak + Ukaik) |0) = vkaJr_k |0) # 0.
It can be shown that the ground state is:
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where Hi means that we do the product on half of the wave vectors, such that only one of each
pair 1 and —1 is included. In order to ensure this, it must be established that:

ak |GS> =0
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with o = ukax +vkal .
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where the sum starts at n = 1 because the term n = 0 gives 0 as ak |0) = 0. In addition, we have

[axe, (af)"] = n(af)" "

Let us show it by induction. This is true for n = 1 since [ax, am = 1. Suppose this is true at the
order n — 1. It follows:

lax, (al)"] = [ax, (al)" af + (af)" *[ax, af]
= (n—1(a)"%af + (af)""
= n(al)" 1
Therefore,
ac(a)" =n(a)" "+ (af)
——
gives 0 on the vaccuum
and we get:
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Finally:
ugax |GS) = kaaT_k |GS)
and thus,
ax |GS) =0.

Lastly, let us check that |F) is normalized.
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(B.) Correction to the magnetization in the antiferromagnetic case
Consider the dispersion relation

1
wp =6JS/1 =72, W= g(coskw + cos ky + cos k)

lLLuk=0&|w|l =1k =k, =k.=0,71. Fork—0
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For g = (m,m,m) et k =0
cos(qz +kz) = —cos(ky)
= VYg+k = Tk
= Wg+k = Wk
~ 2V3JS|K|

2. We must evaluate
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In the thermodynamic limit, k£ becomes a continuous variable. We can therefore replace the sum
by an integral on the first Brillouin zone (-7 < k5, ky, k. < 7):
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But wgik = w for ¢ = (£m, £7, £m)
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We can therefore restrict the integration domain to D = [—m, 7] x [—7, 7] x [=7/2,7/2] (one
half of the cube of side 7):
SM® ~ _ 2 / “E"‘Uﬁd:sk
(2m)% Jp e —1

For low temperatures (T < J.S), the Bose-Einstein distribution diverges when wyx = 0. For
the considered integration domain wg = 0 only at k = 0. We thus infer that the terms that
dominate in the integrals are those with small wave vectors. To capture the dependency in T’
we can then use spherical coordinates and integrate on a sphere centered in k = 0, with radius

5.
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Using the expansion of wy for k — 0 we have
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We use the change of variable p = %k
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and

Cmagnetic = oT

- ()



