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Figure 2: The Haldane pseudopotential Vm vs. relative angular momentum m for two particles
interacting via the Coulomb interaction. Units are e2/ε", where ε is the dielectric constant of the
host semiconductor and the finite thickness of the quantum well has been neglected.
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Figure 3: Orbital occupancies for the maximal density filled Landau level state with (a) two particles
and (b) three particles. There are no particle labels here. In the Slater determinant wave function,
the particles are labeled but a sum is taken over all possible permutations of the labels in order to
antisymmetrize the wave function.

presence of an attractive potential the eigenvalues change sign, but of course the eigenfunctions
remain exactly the same (since they are unique)!

The fact that a repulsive potential has a discrete spectrum for a pair of particles is (as we will
shortly see) the central feature of the physics underlying the existence of an excitation gap in the
fractional quantum Hall effect. One might hope that since we have found analyticity to uniquely
determine the two-body eigenstates, we might be able to determine many-particle eigenstates
exactly. The situation is complicated however by the fact that for three or more particles, the
various relative angular momenta L12, L13, L23, etc. do not all commute. Thus we can not write
down general exact eigenstates. We will however be able to use the analyticity to great advantage
and make exact statements for certain special cases.

2.1 The ν = 1 many-body state

So far we have found the one- and two-body states. Our next task is to write down the wave
function for a fully filled Landau level. We need to find

ψ[z] = f [z] e
− 1

4

∑
j
|zj|2 (17)

where [z] stands for (z1, z2, . . . , zN ) and f is a polynomial representing the Slater determinant with
all states occupied. Consider the simple example of two particles. We want one particle in the orbital
ϕ0 and one in ϕ1, as illustrated schematically in Fig. (3a). Thus (again ignoring normalization)

f [z] =
∣∣∣∣

(z1)0 (z2)0
(z1)1 (z2)1

∣∣∣∣ = (z1)0(z2)1 − (z2)0(z1)1

= (z2 − z1) (18)
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 Snapshots of Laughlin wave function
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Figure 4: Comparison of typical configurations for a completely uncorrelated (Poisson) distribution
of 1000 particles (left panel) to the distribution given by the Laughlin wave function for m = 3
(right panel). The latter is a snapshot taken during a Monte Carlo simulation of the distribution.
The Monte Carlo procedure consists of proposing a random trial move of one of the particles to a
new position. If this move increases the value of |Ψ|2 it is always accepted. If the move decreases
the value of |Ψ|2 by a factor p, then the move is accepted with probability p. After equilibration
of the plasma by a large number of such moves one finds that the configurations generated are
distributed according to |Ψ|2. (After R. B. Laughlin, Chap. 7 in [2].)

simple to solve, but this is not the case. However if we consider the case of a ‘hard-core potential’
defined by vm′ = 0 for m′ ≥ m, then clearly the mth Laughlin state is an exact, zero energy
eigenstate

V ψm[z] = 0. (41)

This follows from the fact that
Pm′(ij)ψm = 0 (42)

for any m′ < m since every pair has relative angular momentum of at least m.
Because the relative angular momentum of a pair can change only in discrete (even integer)

units, it turns out that this hard core model has an excitation gap. For example for m = 3, any
excitation out of the Laughlin ground state necessarily weakens the nearly ideal correlations by
forcing at least one pair of particles to have relative angular momentum 1 instead of 3 (or larger).
This costs an excitation energy of order v1.

This excitation gap is essential to the existence of dissipationless (σxx = ρxx = 0) current
flow. In addition this gap means that the Laughlin state is stable against perturbations. Thus
the difference between the Haldane pseudopotentials vm for the Coulomb interaction and the
pseudopotentials for the hard core model can be treated as a small perturbation (relative to the
excitation gap). Numerical studies show that for realistic pseudopotentials the overlap between the
true ground state and the Laughlin state is extremely good.

To get a better understanding of the correlations built into the Laughlin wave function it
is useful to consider the snapshot in Fig. (4) which shows a typical configuration of particles in
the Laughlin ground state (obtained from a Monte Carlo sampling of |ψ|2) compared to a random
(Poisson) distribution. Focussing first on the large scale features we see that density fluctuations
at long wavelengths are severely suppressed in the Laughlin state. This is easily understood in
terms of the plasma analogy and the desire for local neutrality. A simple estimate for the density
fluctuations ρ!q at wave vector $q can be obtained by noting that the fake plasma potential energy
can be written (ignoring a constant associated with self-interactions being included)

Uclass =
1

2L2

∑

!q "=0

2πm2

q2
ρ!qρ−!q (43)

where L2 is the area of the system and 2π
q2 is the Fourier transform of the logarithmic potential

(easily derived from ∇2 (− ln (r)) = −2π δ2($r ) ). At long wavelengths (q2 $ n) it is legitimate
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Density correlations in the Laughlin wavefunction
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Figure 5: Plot of the two-point correlation function h(r) ≡ 1 − g(r) for the Laughlin plasma with
ν−1 = m = 3 (left panel) and m = 5 (right panel). Notice that, unlike the result for m = 1 given
in eq. (46), g(r) exhibits the oscillatory behavior characteristic of a strongly coupled plasma with
short-range solid-like local order.

to treat ρ!q as a collective coordinate of an elastic continuum. The distribution e−βUclass of these
coordinates is a gaussian and so obeys (taking into account the fact that ρ−!q = (ρ!q)∗)

〈ρ!qρ−!q〉 = L2 q2

4πm
. (44)

We clearly see that the long-range (fake) forces in the (fake) plasma strongly suppress long wave-
length density fluctuations. We will return more to this point later when we study collective density
wave excitations above the Laughlin ground state.

The density fluctuations on short length scales are best studied in real space. The radial
correlation g(r) function is a convenient object to consider. g(r) tells us the density at r given that
there is a particle at the origin

g(r) =
N(N − 1)

n2Z

∫
d2z3 . . .

∫
d2zN |ψ(0, r, z3, . . . , zN )|2 (45)

where Z ≡ 〈ψ|ψ〉, n is the density (assumed uniform) and the remaining factors account for all
the different pairs of particles that could contribute. The factors of density are included in the
denominator so that limr→∞ g(r) = 1.

Because the m = 1 state is a single Slater determinant g(z) can be computed exactly

g(z) = 1 − e−
1
2 |z|

2
. (46)

Fig. (5) shows numerical estimates of h(r) ≡ 1 − g(r) for the cases m = 3 and 5. Notice that for
the ν = 1/m state g(z) ∼ |z|2m for small distances. Because of the strong suppression of density
fluctuations at long wavelengths, g(z) converges exponentially rapidly to unity at large distances.
For m > 1, g develops oscillations indicative of solid-like correlations and, the plasma actually
freezes2 at m ≈ 65. The Coulomb interaction energy can be expressed in terms of g(z) as3

〈ψ|V |ψ〉
〈ψ|ψ〉 =

nN

2

∫
d2z

e2

ε|z| [g(z) − 1] (47)

where the (−1) term accounts for the neutralizing background and ε is the dielectric constant of
the host semiconductor. We can interpret g(z)− 1 as the density of the ‘exchange-correlation hole’
surrounding each particle.

2That is, Monte Carlo simulation of |Ψ|2 shows that the particles are most likely to be found in a crystalline
configuration which breaks translation symmetry. Again we emphasize that this is a statement about the Laughlin
variational wave function, not necessarily a statement about what the electrons actually do. It turns out that for
m ≥∼ 7 the Laughlin wave function is no longer the best variational wave function. One can write down wave
functions describing Wigner crystal states which have lower variational energy than the Laughlin liquid.

3This expression assumes a strictly zero thickness electron gas. Otherwise one must replace e2

ε|z| by

e2

ε

∫ +∞
−∞ ds |F (s)|2√

|z|2+s2
where F is the wavefunction factor describing the quantum well bound state.


