
Solid state physics III Homework 1 Oct. 2nd, 2024

• This is an individual homework. Each submission must have been worked out and written up
by the submitting student.

• This homework is an open-book assessment. Students are permitted to use lecture slides, notes,
exercises, and any other provided resource materials to solve the problems.

• Some problems may require students to generate plots. For this, students may utilize any offline
or online plotting tools of their choice.

• Each homework set contains questions worth a total of 20 points. You may gain extra point(s)
by solving the optional questions. But the maximum you can get in one homework is 20.

• A digital copy of the homework solutions, whether handwritten or typed, must be submitted
through the Moodle assignment section by Monday, October 7th, 2024, at 11:59 PM.

• The homework will be assessed within a reasonable timeframe, and students may discuss their
assessments during the exercise sessions.

For a 1D monoatomic chain of N sites a nearest-neighbour tight-binding Hamiltonian is given by:

H = −t
N∑
j=1

(
c†jcj+1 + c†j+1cj

)
. (1)

where t is the hopping amplitude, and c†i (ci) are the fermionic particle creation (annihilation) opera-
tors associated to site-i. This is a crucial Hamiltonian in solid state physics, which can be supplemented
with additional terms to model a number of effects observed in real systems.

Diatomic tight binding chain

Now let’s consider another example by adding alternating onsite potential to the nearest-neighbour
tight-binding model with periodic boundary condition (assuming N is even and va < vb):

H = −t
N∑
j=1

(
c†jcj+1 + c†j+1cj

)
+ va

N/2∑
j=1

n2j−1 + vb

N/2∑
j=1

n2j , (2)

where nj = c†jcj is the number operator. This Hamiltonian models a diatomic system with two distinct
atoms, implied by two different on-site potentials, in each unit cell.

(a) Using the Heisenberg equation of motion, write the equation of motion for c†i ci+1. [2 points]

(b) Band structure

Let’s now figure out the band structure of such a system.
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(i) In order to diagonalize the Hamiltonian Eq. (2), we first label the operators at odd site as
aj ≡ c2j−1 and at even site as bj ≡ c2j . Then the corresponding Fourier transformation is

ak :=

√
2

N

N/2∑
j=1

aje
−2ikj , aj =

√
2

N

∑
#k

ake
+2ikj ;

bk :=

√
2

N

N/2∑
j=1

bje
−2ikj , bj =

√
2

N

∑
#k

bke
+2ikj ;

(3)

where #k indicates the sum is over reduced Brillouin zone k = 2π
N n, n = −⌊N

4 ⌋+1,−⌊N
4 ⌋+

2, . . . ,−⌊N
4 ⌋+

N
2 , k ∈ (π2 ,

π
2 ] (we have encountered this in Exercise 3).

Now use Eq. (3) to write the Hamiltonian Eq. (2) in momentum space. [2 points]

(ii) Define the grouped operator ψ†
k :=

(
a†k, b

†
k

)
. Write the Hamiltonian into the following matrix

form:
H =

∑
#k

ψ†
kH(k)ψk. (4)

What is the expression of H(k)? [2 points]

(iii) Find the unitary transformation Uk to diagonalize H(k). What are the eigenvalues? And
what is the gap ∆ (the smallest difference between the two eigenvalues)? [3 points]

hint: If a hermitian matrix H can be written as a linear combination of identity matrix and
Pauli matrices σx, σy and σz:

H = h0I+ h1σ
x + h2σ

y + h3σ
z = h0I+ h⃗ · σ⃗,

we can parameterize h⃗ as h⃗ = |⃗h| (cosφ sin θ, sinφ sin θ, cos θ)
T
, where |⃗h| =

√
h21 + h22 + h23,

and then the unitary transformation to diagonalize H is

U =

(
e−iφ/2 cos θ

2 e+iφ/2 sin θ
2

e−iφ/2 sin θ
2 −e+iφ/2 cos θ

2

)
.

Finally, we find the diagonalized Hamiltonian as

H =
∑
#k

ψ†
kUkU

†
kH(k)UkU

†
kψk =

∑
#k

(
Eα(k)α

†
kαk + Eβ(k)β

†
kβk

)
, (5)

where
(
β†
k, α

†
k

)
=

(
a†k, b

†
k

)
Uk.

(c) (Optional) By evaluating the usual anticommutation relations, confirm that αk and βk are
fermionic as well. [1 point]

(d) Analyze the behavior of the lowest energy band near its minima and compare it with the free
electron dispersion to determine the “effective” mass of the electrons. [1 point]

(e) (Optional) Determine the effective mass of the electrons for the lower band at k = π/2. What
does a negative effective mass signify? [2 points]

(f) Exciton

We can now obtain a simple model for excitons by additionally introducing an interaction between
the electrons and holes to Eq. (2). In this task we consider short-range interactions between nearest
neighbor sites

Û = u
∑
j

njnj+1.
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Express the interaction in the form

Û ≈ −4u

N

∑
#k,k′,q

cos2(k − k′)αq+kβ
†
kβk′α

†
k′+q. (6)

Proceed as follows:

(i) Recall the transformation of the operators ak, bk into the eigenbasis in the interaction free
case (valence, conduction band) with the unitary matrix U :(

βk
αk

)
= U†

(
ak
bk

)
=

(
e−iφ/2 cos θ

2 e+iφ/2 sin θ
2

e−iφ/2 sin θ
2 −e+iφ/2 cos θ

2

)
·
(
ak
bk

)
(7)

We approximate the matrix elements with their value at k = π/2 in the lower band. Why
do we focus on this value of k ? Show that in this case

αk ≈ ak

βk ≈ bk

up to a phase. [2 points]

(ii) Under this approximation, rewrite the interaction U by introducing the number operators
on even and odd sites n2j and n2j±1, and then replace them with α’s and β’s. We neglect
here all terms which only contain two β-operators to obtain Eq. (6). Consider the fermionic
commutation relations! [3 points]

(iii) We now make the Ansatz for an excitonic wave function with momentum q:

|Ψq⟩ =
∑
#k

Aq
k αq+kβ

†
k|Ω⟩ , (8)

where Ω denotes the ground state for Û = 0, |Ω⟩ =
∏

#k α
†
k |0⟩. Within our approximation,

one can determine Aq such that the exciton is an eigenstate of H + Û with energy EΩ + ωq.

Here EΩ denotes the groundstate energy for Û = 0, H |Ω⟩ = EΩ |Ω⟩. Furthermore, let’s do a
global shift Eshift to the energy spectrum so that Eα(k) = Eshift−Ek and Eβ(k) = Eshift+Ek

(this operation, of course, would not change the physics). What is Eshift?

Show that the equation

(Ek + Ek+q − ωq)A
q
k =

4u

N

∑
#k′

Aq
k′ cos

2(k − k′) , (9)

must be satisfied. [4 points]

(iv) For u≪ t, |va − vb|, we can approximate cos(k − k′) ≈ 1. Show, that Eq. (9) can be simpli-
fied to

1

4u
=

1

N

∑
#k

1

Ek + Ek+q − ωq
. (10)

[1 point]

(v) (Optional) Find a graphical solution for the equation for fixed va, vb, t and q on a small
system (e.g., N = 10) with Mathematica or any numerical tool you like. Show that a state
exists below the energy gap ∆ and interpret this result! Discuss the differences compared
to the exciton energy structure discussed in the three dimensional situation with a Coulomb
interaction in the lecture. [2 points]
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