
Solid state physics III Exercise session 5 Oct. 16th 2024

Fractional quantum Hall effect: Laughlin wavefunction In this exercise, we will
try to derive the Laughlin wavefunction without trapping potential step by step starting from the
Hamiltonian, and look at its properties in detail, as it plays an important role in QHE. We consider
spinless electrons in two dimensions.

1) In this question, we rederive the expression of the single-particle orbitals in the symmetric gauge.
NB: Questions (a) to (e) can be done without specifying the gauge.

(a) Write the general expression of the Hamiltonian of a particule of charge −e in a uniform magneric
field.

(b) We introduce the operators

Π̂x/y = p̂x/y +
e

c
Ax/y. (1)

Compute the commutator [Π̂x, Π̂y]. Show that we can write the Hamiltonian as

HLandau =
1

2m
P̂ 2 +

1

2
mω2

c Q̂
2 (2)

with [Q̂, P̂ ] = iℏ.

(c) Show that the Hamiltonian can be rewritten as

H = ℏωc(a
†a+

1

2
) (3)

with a, a† bosonic operators verifying [a, a†] = 1.

(d) We now introduce the operators

X̂ = x̂− 1

mωc
Π̂y (4)

Ŷ = ŷ +
1

mωc
Π̂x. (5)

Show that they commute with the Hamiltonian and compute the commutator [X̂, Ŷ ].

(e) Show that there exist b, b† bosonic operators such that [b,HLandau] = [b†, HLandau] = 0. Deduce
the general form of the eigenstates of HLandau in terms of a and b, and give the corresponding
energies.

(f) We use the convention z = x − iy and ∂ = (∂x + i∂y)/2. Show that, in the symmetric gauge
defined by

Ax = −By

2
, Ay =

Bx

2
, (6)
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one can rewrite the a and b operators such that:

a =
√
2

(
z

4lB
+ lB∂

)
, (7)

b =
√
2

(
z∗

4lB
+ lB∂

)
, (8)

where lB is a length scale to be determined.

(g) Show that the eigenstates of HLandau in the lowest Landau level can be written as

Φn=0,m =
1√

2πl2Bm!

(
z√
2lB

)m

e−|z|2/4l2B . (9)

Note that if we write z = re−iϕ, we reach exactly the same expression as Eq.(4.43) in Sigrist’s
textbook.

Hint: start from the state with n = m = 0 and use induction.

2) In this question, we discuss the orbital momentum of the electrons.

(a) What is the angular momentum of a classical particle?

(b) Using that definition, express L̂z as a function of Π̂x, Π̂y, X̂ and Ŷ . Deduce its expression in
terms of a and b.

(c) We introduce the center of mass and the relative coordinates for two electrons:

R⃗CM =
r⃗1 + r⃗2

2
and r⃗rel = r⃗1 − r⃗2,

P⃗CM = p⃗1 + p⃗2 and p⃗rel =
r⃗1 − r⃗2

2
.

(10)

What is the relation between L⃗1, L⃗2, L⃗CM and L⃗rel? Show that one can rewrite

L̂z
CM = ℏ(α†

+α+ − β†
+β+), L̂z

rel = ℏ(α†
−α− − β†

−β−) (11)

with √
2α± = a1 ± a2,

√
2β± = b1 ± b2. (12)

(d) Show that L̂z
CM and L̂z

rel commute. Let’s now work in the lowest Landau levels, and let |M,m⟩
the two particle state defined by

L̂z
CM|M,m⟩ = ℏM |M,m⟩, (13)

L̂z
rel|M,m⟩ = ℏm|M,m⟩. (14)

Show that it is proportional to

(z1 + z2)
M (z1 − z2)

me
−

∑
i
|zi|2/4l2B

(15)

(e) Turn back to the one-particle wavefunction. We note

Φn,m = Pn,m(z, z∗)e−|z|2/4l2B . (16)

Derive the recurrence equation on n satisfied by Pn,m and deduce that Pn,m is a polynomial in
z and z∗. What is the angular momentum of the orbital Φn,m? Finally, give the form of Φn,0.
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