
Solid state physics III Exercise session 4 October 9th 2024

(A.) The de Haas-van Alphen effect: The de Haas-van Alphen effect is an oscillatory
variation of the diamagnetic susceptibility as a function of the magnetic field strength (B). The
method provides details of the extremal areas of a Fermi surface. In 1930, de Haas and van Alphen
measured the magnetization M of the semimetal bismuth (Bi) as a function of B. They observed
that the magnetic susceptibility M/B is a periodic function of 1/B. This phenomenon is typically
observed at low temperatures and high magnetic fields in metals that satisfy kBT ≲ ℏωc ≪ µ, where
µ is the chemical potential.

The energy of free electrons in a strong magnetic field is given by

En,kz,± = ℏωc(n+
1

2
) +

ℏ2k2z
2m

± 1

2
gµBB n = 0, 1, 2, . . . ,

where ωc = eB
mc is the cyclotron frequency. The last term is the coupling between the spin of the

electrons and the magnetic field (Zeeman effect), g = 2 is the Landé factor and µB = ℏe
2mc is the Bohr

magneton. The terms can be rearranged as

En,kz
= ℏωcn+

ℏ2k2z
2m

n = 0, 1, . . . ,

where each value with n ̸= 0 occurs twice and the value with n = 0 occurs only once (and do not
forget the Landau level degeneracy1).

1. Using the definition of the free energy, F = −kBT logZ, where Z is the grand partition function,
show that (hint: First derive the expression of F for a general fermionic system with energy
spectrum {Eα}, and then replace {Eα} by {En,kz} with the degeneracy).
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1

2
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]
,

where
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(1)

2. Derive the Poissons’s formula

1

2
g(0) +

∞∑
n=1

g(n) =

∫ ∞

0

g(x)dx+

∞∑
n=1

2Re

∫ ∞

0

g(x)e2πinxdx (2)

for a general function g(x). In order to do so, use the following Fourier series

∞∑
m=−∞

δ(x−m) =

∞∑
n=−∞

e2πinx,

and
∫∞
0

δ(x)g(x)dx = 1
2g(0). Here δ(x) is the Dirac delta function.

1We also recommend reading Section 3.1 of the lecture notes by Prof.Frédéric Mila for the explanation of Landau
levels.
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3. Using the Eq. (2) with g(x) = f(µ− ℏωcx) defined in Eq. (1), show that the free energy can be
rewritten as

F = F0 + F1, F0 = ℏωc

∫ ∞

0

dxf(µ− ℏωcx), F1 =
mV

βπ2ℏ2
Re

∞∑
n=1

In.

Show that F0 is independent of B (without explicitly doing the integral). What is the expression
of In?

4. By integrating by parts twice, show that in the limit kBT ≪ µ,

F1 =
(mℏωc)

3/2V

2π2ℏ3β

∞∑
n=1

cos
(

2πnµ
ℏωc

− π
4

)
n3/2 sinh

(
2π2n
ℏωcβ

) . (3)

In order to do so, you may need the change of variable x → ξ = β(ℏωcx +
ℏ2k2

z

2m − µ) and the
following integrals: ∫ ∞

−∞
e−iαk2

zdkz = e−
iπ
4

√
π

α
,∫ ∞

−∞

eξ

(eξ + 1)2
eiαξdξ =

πα

sinh(πα)
.

(hint: The fact that 1. kBT ≪ µ; 2. only small values of kz contribute significantly to the kz
integral because of the oscillating factor; 3. the dominating contribution to the ξ integral comes
from around ξ = 0 means you can adjust the lower boundary of the ξ integral safely.)

5. Calculate the magnetic susceptibility

M

B
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B
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B2πℏ3β

∞∑
n=1

sin
(

2πnµ
ℏωc

− π
4

)
√
n sinh

(
2π2n
ℏωcβ

) ,
where M is the magnetisation density. We assume that only the most rapidly oscillating factors
(the cosine term in Eq. (3)) needs to be differentiated.

6. What is the period of the oscillation?

7. Show that in the limit ℏωc ≪ kBT (small magnetic field), the amplitude of the oscillation
vanishes exponentially with kBT/(ℏωc).
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