
Solid state physics III Exercise session 3 Sept. 25th, 2024

A simple semiconductor and the formation of excitons

Band Structure

We can model a semiconductor by considering electrons in a one-dimensional chain lattice subject to
an alternating (chemical) potential. The corresponding Hamilton operator reads in second quantized
form:

H = −t

N∑
j=1

(
c†jcj+1 + c†j+1cj

)
+ v

N∑
j=1

(−1)jnj . (1)

Here c†j (cj) creates (annihilates) a spinless electron at site i. nj = c†jcj is the number operator on site
j. You can treat Eq. (1) by transforming the Hamiltonian into k-space and rewriting it as a matrix
equation.

(a) Bring Eq. (1) into the form

H =
∑
#k

c̄†kH(k)c̄k , (2)

where c̄†k = (c†k, c
†
k+π). The hash # indicates, that the sum is to be taken over the reduced

Brillouin zone, i.e. here k ∈ (−π/2, π/2].

(b) Find the unitary transformation U =

(
−uk vk
v∗k u∗

k

)
, which diagonalizes H(k) and determine the

eigenenergies Ek of H(k). Furthermore, determine the band gap ∆.

(c) Introduce the operators ᾱ†
k = (a†k, b

†
k) = c̄†kU

†, to show that the Hamiltonian can be expressed as

H =
∑
#k

[
−Eka

†
kak + Ekb

†
kbk

]
. (3)

(d) Find the ground state |Ω⟩ of H at electron density nk = c†kck = 1/2 (half-filling) and think of an

interpretation for the new particles created by a†k and b†k.

Wigner crystallization

In this example we consider the Jellium model of metals where the ionic lattice is replaced by a
homogeneously charged background and the electrons can move around freely (see lecture). For
typical densities the electrons form an electron gas and are described by a filled Fermi sea. Due to the
fermionic character of electrons, however, at low densities the electrons will form a lattice structure
instead of an electron gas. This process is called Wigner crystallization and should be considered in
a simple version in this exercise.

Let us consider that the electrons are localized on a lattice and are exposed to a uniform positive
background charge. For a single electron let us now consider a sphere of radius d = rsaB where aB is
the Bohr radius. Each electron will be at the center of such a sphere and the total background charge
inside a single sphere is equal to the electron charge +e such that there is no total electric field outside
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of a sphere. The spheres are regularly placed in a lattice such that they do not overlap. Therefore,
we can neglect all interactions between different spheres.

We will now compute the potential energy for a single sphere which is built from only two terms,
the potential energy between the positive background charge inside a sphere with itself, Upp, and
the potential energy between the electron at the center and the positive background charge within a
sphere, Uep.

(a) Compute the charge density ρ of the positive background charge within a sphere. Use Gauss’ law
4πQ =

∮
E · dA to compute the electric field Ep(r) of the positive background inside the sphere

r ≤ rsaB . Q is the total charge within the surface of the integral. What is the field Ep(r) outside
the sphere?

(b) From Ep(r) compute the potential Vp(r) and make it continuos at the r = rsaB . Show that

Vp(r) =

{
e

2rsaB

(
3− r2

(rsaB)2

)
, r ≤ rsaB

e
r , r > rsaB .

(4)

(c) Use the previous result to compute the self-energy of the uniformly charged background in a
sphere, Upp, and show that

Upp =
3

5

e2

rsaB
. (5)

(d) Compute the potential energy between the background and the electron at the center of the sphere
to show that

Uep = −3

2

e2

rsaB
. (6)

(e) We now have to add the kinetic energy for a single electron. We make a very simple assumption
and consider that the electron in the sphere is described by a free wave with wavelength λ ≈ rsaB .
Compute the kinetic energy of the electron and the total energy for an electron in the Wigner
crystal EWigner.

(f) Let us now compare the energy of the Wigner crystal with the energy per electron in the Fermi
sea, EF . According to Sommerfeld-Pauli theory of metals, the energy density n(E) = 3

2ε
3/2
F

E1/2.

Use this to show that EF = 3/5 ϵF for T = 0, where EF is the average energy per electron in the
Fermi sea. Then use the relations

aB =
ℏ2

me2
and kF =

(
9π

4

)1/3
1

rsaB
,

to determine for which values of rs the Wigner crystal has lower energy than the Fermi-sea!
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