
Solid state physics 3 Exercise session 10 Dec. 12th, 2024

(A.) Anti-ferromagnetic Holstein-Primakoff transformation: In the lecture, we
introduced the Holstein-Primakoff transformation on a bipartite lattice for antiferromagnets. On the
sublattice A, this is the same as the ferromagnetic case from session 3. On the sublattice B, the
transformation writes: 

Sz
j = −S + b†jbj

S+
j = b†j

(√
2S − b†jbj

)
S−j =

(√
2S − b†jbj

)
bj

(1)

Show that by imposing bosonic commutation relations [bj , b
†
i ] = δij , [bi, bj ] = [b†j , b

†
i ] = 0, one

recovers spin operators commutation relations.

(B.) Antiferromagnetic ground state: Consider the Antiferromagnetic Heisenberg model
on a bipartite lattice, with J > 0:

H = J
∑
〈i,j〉

Si · Sj

The hypothesis that the quantum ground state is close to the Néel state allows us to apply spin wave
theory in order to study the behavior of quantum fluctuations. By performing a Holstein-Primakoff
transformation using the bosonic operators ai, followed by a Fourier transformation and a Bogoliubov
transformation with coefficients uk and vk , we can write the Hamiltonian in diagonalform in terms
of bosonic operators αk (see course):

H = E0 +
∑
k

ωkα
†
kαk

Show that the ground state is given by:

|GS〉 =
∏
k

′ 1

uk
exp

(
− vk
uk
a†ka
†
−k

)
|0〉

where |0〉 is the vaccuum state for the bosons ak and
∏′

k stands for the product on half the wavevectors,
such that only one of each pair k and −k is included.

(C.) Antiferromagnetic correction to the magnetization: Let us consider the an-
tiferromagnetic Heisenberg model (J > 0):

H = J
∑
〈i,j〉

Si · Sj
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on the cubic lattice (dimension D = 3). By performing a Holstein-Primakoff transformation followed
by a Bogoliubov transformation with coefficients

u2k =
6JS + ωk

2ωk
, v2k =

6JS − ωk

2ωk
,

H H is written in terms of bosonic operators as (see course):

H = E0 +
∑
k

ωkα
†
kαk.

The dispersion relation is given by:

ωk = 6JS
√

1− γ2k, γk =
1

3
(cos kx + cos ky + cos kz)

and the staggered magnetization by:

Malt ≡
1

N

〈∑
i∈A

Sz
i −

∑
j∈B

Sz
j

〉
' S + δM (1) + δM (2).

where δM (1) et δM (2) are the corrections to the magnetization due, respectively, to quantum fluctu-
ations (T = 0 ) and thermal fluctuations (T 6= 0),

δM (1) = − 1

N

∑
k

v2k

δM (2) = − 1

N

∑
k

nk(u2k + v2k).

nk is the Bose-Einstein distribution:

nk =
1

exp
(
ωk

T

)
− 1

1. Show that in the first Brillouin zone (−π < kx, ky, kz ≤ π), the dispersion ωk vanishes for k = 0
and k = (π, π, π), as well as

ωk = ωq+k ' 2
√

3JS|k| for k ' 0 and q = (π, π, π)

2. Show that the correction to the magnetization δM (2) behaves as

δM (2) ∼ −
(
T

JS

)2

for T � JS

3. The energy density of magnons is given by E =
∫
ω(k)nkd

3k. The specific heat is then defined
as cAF

magnetic = ∂E/∂T Show it behaves as

cAF
magnetic ∼

(
T

JS

)3

for T � JS

These results are to be compared to the ferromagnetic case. The difference in the T dependence
is due to the fact that the dispersion of the antiferromagnetic model is linear around k = 0 while it is
quadratic for the ferromagnetic model, as well as the presence of quantum fluctuations.
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