SOLID STATE PHYSICS 3 Exercise session 10 Dec. 12th, 2024

(A.) Anti-ferromagnetic Holstein-Primakoff transformation: In the lecture, we
introduced the Holstein-Primakoff transformation on a bipartite lattice for antiferromagnets. On the
sublattice A, this is the same as the ferromagnetic case from session 3. On the sublattice B, the

transformation writes:
Sz = —S+blb;

ot T
SF = bl (./25—bjbj> "
- T
ST = <,/2S - bjbj> b;

Show that by imposing bosonic commutation relations [bj7b;r] = 0;5, [bi,bj] = bf,b1]

;- 0;] = 0, one
recovers spin operators commutation relations.

(B.) Antiferromagnetic ground state: Consider the Antiferromagnetic Heisenberg model
on a bipartite lattice, with J > 0:
H=17)S8;8;
(i,9)

The hypothesis that the quantum ground state is close to the Néel state allows us to apply spin wave
theory in order to study the behavior of quantum fluctuations. By performing a Holstein-Primakoff
transformation using the bosonic operators a;, followed by a Fourier transformation and a Bogoliubov
transformation with coefficients uy and vy , we can write the Hamiltonian in diagonalform in terms
of bosonic operators ax (see course):

H=Fy+ Zwkalak
k
Show that the ground state is given by:
' 1 Ukt
GS) = — —-— 0
69) =] e (- palals ) 0

where |0) is the vaccuum state for the bosons ax and [, stands for the product on half the wavevectors,
such that only one of each pair k and —k is included.

(C.) Antiferromagnetic correction to the magnetization: Let us consider the an-
tiferromagnetic Heisenberg model (J > 0):

H=17)S;8;
(i:7)
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on the cubic lattice (dimension D = 3). By performing a Holstein-Primakoff transformation followed
by a Bogoliubov transformation with coefficients

6JS+OJk

6JS — Wk
Zwk ’

2
V- =
’ k ka

ul =

H H is written in terms of bosonic operators as (see course):

H=Fy+ Zwkaltak.
k

The dispersion relation is given by:

1
wk =6JSy/1 -2, = g(coskm + cos ky + cos k)

and the staggered magnetization by:
1
= _ z_ z\ ~ (1) (2)
Malt_N<ZSi Zsj>_5+5M +0M®.
i€A JjEB

where M ™) et M) are the corrections to the magnetization due, respectively, to quantum fluctu-
ations (T' =0 ) and thermal fluctuations (T # 0),

1
5M(1) = — N Z Ulzc
k
1
SM® = N an(ui + vi).
k
nyk is the Bose-Einstein distribution:
1
e = exp(“}—k) -1

1. Show that in the first Brillouin zone (—7 < kg, ky, k. < ), the dispersion wi vanishes for k = 0
and k = (m,m,7), as well as

Wi = Wark =~ 2V3JS|k| fork~0and q = (m,,7)

2. Show that the correction to the magnetization §M(?) behaves as

2
SM®@ ~ — <JTS) for T < JS

3. The energy density of magnons is given by F = [w(k)nkd®k. The specific heat is then defined
as chF = OE /0T Show it behaves as

magnetic

73
Cﬁggnetic ~ (JS) forT < JS

These results are to be compared to the ferromagnetic case. The difference in the T" dependence
is due to the fact that the dispersion of the antiferromagnetic model is linear around k = 0 while it is
quadratic for the ferromagnetic model, as well as the presence of quantum fluctuations.



