Particle Physics 1 : Exercise 9

1) Properties of the chirality operator

Using the properties of the γ -matrices and the definition of the chirality operator $\gamma^5 = i\gamma^0\gamma^1\gamma^2\gamma^3$, show that

- (a) $(\gamma^5)^2 = 1$
- (b) $\gamma^{5\dagger} = \gamma^5$
- (c) $\gamma^5 \gamma^\mu = -\gamma^\mu \gamma^5$

2) Chiral projection operators

Show that the chiral projection operators $P_R = \frac{1}{2}(1 + \gamma^5)$ and $P_L = \frac{1}{2}(1 - \gamma^5)$ are indeed projection operators, i.e. they satisfy the following properties:

$$P_R + P_L = 1$$
, $P_R P_R = P_R$, $P_L P_L = P_L$, $P_R P_L = 0$

3) Differential cross section for $e^-\mu^- \to e^-\mu^-$ scattering

Using helicity amplitudes, calculate the differential cross section for $e^-\mu^- \to e^-\mu^-$ scattering in the following steps

(a) From the Feynman rules of QED, show that the lowest-order QED matrix element for $e^-\mu^- \to e^-\mu^-$ is

$$\mathcal{M}_{fi} = -\frac{e^2}{(p_1 - p_3)^2} g_{\mu\nu} \left[\overline{u}(p_3) \gamma^{\mu} u(p_1) \right] \left[\overline{u}(p_4) \gamma^{\nu} u(p_2) \right],$$

where p_1 and p_3 are the four-momenta of the initial- and final-state e^- , and p_2 and p_4 are the four-momenta of the initial- and final-state μ^- .

(b) Working in the centre-of-mass frame, and writing the four-momenta of the initial and final-state e^- as $p_1^{\mu} = (E_1, 0, 0, p)$ and $p_3^{\mu} = (E_1, p \sin \theta, 0, p \cos \theta)$ respectively, show that the electron currents for the four possible helicity combinations are

$$\overline{u}_{\downarrow}(p_3)\gamma^{\mu}u_{\downarrow}(p_1) = 2(E_1c, p_s, -ip_s, p_c)
\overline{u}_{\uparrow}(p_3)\gamma^{\mu}u_{\downarrow}(p_1) = 2(m_s, 0, 0, 0)
\overline{u}_{\uparrow}(p_3)\gamma^{\mu}u_{\uparrow}(p_1) = 2(E_1c, p_s, ip_s, p_c)
\overline{u}_{\downarrow}(p_3)\gamma^{\mu}u_{\uparrow}(p_1) = -2(m_s, 0, 0, 0)$$

where m is the electron mass, $s = \sin \theta/2$ and $c = \cos \theta/2$.

(c) Explain why the effect of the parity operator $\hat{P} = \gamma^0$ is

$$\hat{P}u_{\uparrow}(\mathbf{p},\theta,\phi) = u_{\downarrow}(\mathbf{p},\pi-\theta,\pi+\phi).$$

Hence, or otherwise, show that the muon currents for the four helicity combinations are

$$\overline{u}_{\downarrow}(p_4)\gamma^{\mu}u_{\downarrow}(p_2) = 2(E_2c, -p_s, -ip_s, -p_c)
\overline{u}_{\uparrow}(p_4)\gamma^{\mu}u_{\downarrow}(p_2) = -2(M_s, 0, 0, 0)
\overline{u}_{\uparrow}(p_4)\gamma^{\mu}u_{\uparrow}(p_2) = 2(E_2c, -p_s, ip_s, -p_c)
\overline{u}_{\downarrow}(p_4)\gamma^{\mu}u_{\uparrow}(p_2) = 2(M_s, 0, 0, 0),$$

where M is the muon mass and $E_2 = \sqrt{\mathbf{p}^2 + M^2}$ is the muon energy in the centre-of-mass frame.

(d) For the relativistic limit where $E \gg M$, show that the matrix element squared for the case where the incoming e^- and incoming μ^- are both left-handed is given by

$$|\mathcal{M}_{LL}|^2 = \frac{4e^4s^2}{(p_1 - p_3)^4},$$

where $s = (p_1 + p_2)^2$. Find the corresponding expressions for $|\mathcal{M}_{RL}|^2$, $|\mathcal{M}_{RR}|^2$ and $|\mathcal{M}_{LR}|^2$.

(e) In this relativistic limit, show that the differential cross section for unpolarised $e^-\mu^- \to e^-\mu^-$ scattering in the centre-of-mass frame is

$$\frac{d\sigma}{d\Omega} = \frac{2\alpha^2}{s} \cdot \frac{1 + \frac{1}{4}(1 + \cos\theta)^2}{(1 - \cos\theta)^2}.$$