
Particle Physics 1 : Exercise 6

1) Dirac and Klein-Gordon equations
Acting on the Dirac equation with γν∂ν and multiplying by −i gives

γνγµ∂ν∂µψ +miγν∂νψ = 0.

Since ψ satisfies the Dirac equation, iγν∂νψ = mψ, and thus

(γνγµ∂ν∂µ +m2)ψ = 0.

Since the order of differentiation doesn’t matter γνγµ∂ν∂µ can be written as

γνγµ∂ν∂µ = 1
2(γνγµ + γµγν)∂ν∂µ = gµν∂ν∂µ,

and therefore

(gµν∂ν∂µ +m2)ψ = 0
⇒ (∂µ∂µ +m2)ψ = 0

which is the Klein-Gordon equation.

2) Spin and angular momentum of a non-relativistic free particle
(a) Consider the commutator of p̂2 with the x-component of L̂ = r̂ × p̂ :

L̂x = ŷp̂z − ẑp̂y.[
p̂2, L̂x

]
=
[
p̂2

x + p̂2
y + p̂2

z, ŷp̂z − ẑp̂y

]
=
[
p̂2

y, ŷp̂z

]
−
[
p̂2

z, ẑp̂y

]
=
[
p̂2

y, ŷ
]
p̂z −

[
p̂2

z, ẑ
]
p̂y,

(1)

where the last line follows from the fact that p̂z commutes with ŷ and p̂y commutes with
ẑ. Using

[ŷ, p̂y] = ŷp̂y − p̂yŷ = i

the commutators in the previous expression can be simplified as, for example :[
p̂2

y, ŷ
]

= p̂yp̂yŷ − ŷp̂yp̂y

= p̂y(ŷp̂y − i) − ŷp̂yp̂y

= p̂yŷp̂y − ip̂y − ŷp̂yp̂y

= (ŷp̂y − i)p̂y − ip̂y − ŷp̂yp̂y

= −2ip̂y.

Similarly, [p̂2
z, ẑ] = −2ip̂z, and therefore Equation (1) becomes[

p̂2, L̂x

]
=
[
p̂2

y, ŷ
]
p̂z −

[
p̂2

z, ẑ
]
p̂y = −2ip̂yp̂z + 2ip̂zp̂y = 0.

(b) Since the Pauli spin matrices do not depend on the spatial coordinates, it is fairly straight-
forward to see that all three components of the spin operator commute with p̂2.
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3) Spin and angular momentum of a relativistic Dirac particle
(a) As in the previous exercise, we will compute the commutator between the Dirac Hamito-

nian ĤD and the first component of the angular momentum L̂x :[
ĤD, L̂x

]
= [α · p̂ + βm, ŷp̂z − ẑp̂y]
= [α · p̂, ŷp̂z − ẑp̂y]
= [αxp̂x + αyp̂y + αzp̂z, ŷp̂z − ẑp̂y]

Given the commutator between x̂j and p̂k,

[xj, pk] = δjki, (2)

the above expression can be simplified as[
ĤD, L̂x

]
= [αyp̂y + αzp̂z, ŷp̂z − ẑp̂y]
= [αyp̂y, ŷp̂z] − [αzp̂z, ẑp̂y]
= αyp̂z [p̂y, ŷ] − αzp̂y [p̂z, ẑ] ,

(3)

where the last equality follows from the fact that p̂y and p̂z commute. Using again Equa-
tion (2), the commutator in Equation (3) can be finally written as[

ĤD, L̂x

]
= −iαyp̂z + iαzp̂y = −i(αyp̂z − αzp̂y) = −i(α × p̂)x.

After repeating a similar computation for L̂y and L̂z, the final result for the angulat
momentum is [

ĤD, L̂
]

= −i(α × p̂).

The spin operator acting on a 4-component Dirac spinor is

Ŝ = 1
2Σ = 1

2

(
σ 0
0 σ

)
.

In order to compute the commutator between the Dirac Hamiltonian and the three com-
ponent of Ŝ, one needs to derive the comutators between the Σ matrices and the matrices
appearing in ĤD, α and β, which in the Dirac-Pauli representation correspond to

αj =
(

0 σj

σj 0

)
and β =

(
1 0
0 −1

)
.

It is straightforward to show that [β,Σk]. Then

[αj,Σk] =
(

0 σj

σj 0

)
·
(
σk 0
0 σk

)
−
(
σk 0
0 σk

)
·
(

0 σj

σj 0

)

=
(

0 σjσk

σjσk 0

)
−
(

0 σkσj

σkσj 0

)
=
(

0 [σj, σk]
[σj, σk] 0

)

= 2iϵjkl

(
0 σl

σl 0

)
= 2iϵjkl αl

(4)

where the last step follows from the commutation relation of the Pauli spin matrices
[σj, σk] = 2iϵjkl σl. Given the commutator in Equation 4, one can easily compute the
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commutator between the Dirac Hamiltonian and the first component of the Spin :[
ĤD, Ŝx

]
= 1

2 [αyp̂y + αzp̂z,Σx]

= 1
2 p̂y [αy,Σx] + 1

2 p̂z [αz,Σx]

= 1
2 p̂y2iϵyxzαz + 1

2 p̂z2iϵzxyαy

= −iαzp̂y + iαyp̂z

= i(αyp̂z − αzp̂y) = i(α × p̂)x.

A similar computation can be carried out for Ŝy and Ŝz to show that[
ĤD, Sx

]
= i(α × p̂).

It is worth noting that in non-relativistic quantum mechanics (previous exercise), both
spin and angular momentum commute with the free-particle Hamiltonian, while in rela-
tivistic quantum mechanics only the sum Ĵ = L̂ + Ŝ does. This implies that, in general,
it is not possible to identify a complete set of Dirac spinor states that are simultaneously
eigentsates of ĤD and e.g. Ŝz, as was instead the case for 2-component spinors in non-
relativistic quantum mechanics. However, in the specific case where the particle momen-
tum is aligned with the z axis, the solutions to the Dirac equation (which are eigenstates
of ĤD) are also eigenstates of Ŝz with eigenvalues ±1

2 , as proven in the second part of the
exercise.

(b) If the momentum p is parallel to the z axis, the four particle solutions to the Dirac
equation reduce to

u1 =
√
E +m


1
0
p

E+m

0

 u2 =
√
E +m


0
1
0

−p
E+m



u3 =
√
E +m


p

E−m

0
1
0

 u4 =
√
E +m


0

−p
E−m

0
1


where u1 and u2 are the positive energy solutions with E =

√
p2 +m2, while u3 and u4

are the negative energy solutions with E = −
√

p2 +m2. Given the operator for the third
component of the spin

Ŝz = 1
2Σz = 1

2


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 ,
it is straightforward to show that

Ŝzu1 = 1
2u1

Ŝzu2 = −1
2u2

Ŝzu3 = 1
2u3

Ŝzu4 = −1
2u4.
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4) Helicity
In the Dirac-Pauli representation

αj =
(

0 σj

σj 0

)
and β =

(
1 0
0 −1

)
.

and since β contains the identity matrix it is clear that
[
ĥ,mβ

]
= 0. Therefore, it is only

necessary to consider the commutator
[
ĥ,α · p̂

]
.

[
ĥ, ĤD

]
=
[
ĥ,α · p̂

]
= 1

2p

[(
σ · p̂ 0

0 σ · p̂

)(
0 σ · p̂

σ · p̂ 0

)
−
(

0 σ · p̂
σ · p̂ 0

)(
σ · p̂ 0

0 σ · p̂

)]

= 1
2p

[(
0 (σ · p̂)2

(σ · p̂)2 0

)
−
(

0 (σ · p̂)2

(σ · p̂)2 0

)]
= 0.
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