Particle Physics 1 : Exercise 6

1) Dirac and Klein-Gordon equations

Acting on the Dirac equation with $\gamma^{\nu}\partial_{\nu}$ and multiplying by -i gives

$$\gamma^{\nu}\gamma^{\mu}\partial_{\nu}\partial_{\mu}\psi + mi\gamma^{\nu}\partial_{\nu}\psi = 0.$$

Since ψ satisfies the Dirac equation, $i\gamma^{\nu}\partial_{\nu}\psi=m\psi$, and thus

$$(\gamma^{\nu}\gamma^{\mu}\partial_{\nu}\partial_{\mu}+m^2)\psi=0.$$

Since the order of differentiation doesn't matter $\gamma^{\nu}\gamma^{\mu}\partial_{\nu}\partial_{\mu}$ can be written as

$$\gamma^{\nu}\gamma^{\mu}\partial_{\nu}\partial_{\mu} = \frac{1}{2}(\gamma^{\nu}\gamma^{\mu} + \gamma^{\mu}\gamma^{\nu})\partial_{\nu}\partial_{\mu} = g^{\mu\nu}\partial_{\nu}\partial_{\mu},$$

and therefore

$$(g^{\mu\nu}\partial_{\nu}\partial_{\mu} + m^2)\psi = 0$$

$$\Rightarrow (\partial^{\mu}\partial_{\mu} + m^2)\psi = 0$$

which is the Klein-Gordon equation.

2) Spin and angular momentum of a non-relativistic free particle

(a) Consider the commutator of $\hat{\mathbf{p}}^2$ with the x-component of $\hat{\mathbf{L}} = \hat{\mathbf{r}} \times \hat{\mathbf{p}}$:

$$\hat{L}_{x} = \hat{y}\hat{p}_{z} - \hat{z}\hat{p}_{y}.$$

$$\left[\hat{\mathbf{p}}^{2}, \hat{L}_{x}\right] = \left[\hat{p}_{x}^{2} + \hat{p}_{y}^{2} + \hat{p}_{z}^{2}, \, \hat{y}\hat{p}_{z} - \hat{z}\hat{p}_{y}\right]$$

$$= \left[\hat{p}_{y}^{2}, \, \hat{y}\hat{p}_{z}\right] - \left[\hat{p}_{z}^{2}, \, \hat{z}\hat{p}_{y}\right]$$

$$= \left[\hat{p}_{y}^{2}, \, \hat{y}\right] \,\hat{p}_{z} - \left[\hat{p}_{z}^{2}, \, \hat{z}\right] \,\hat{p}_{y},$$
(1)

where the last line follows from the fact that \hat{p}_z commutes with \hat{y} and \hat{p}_y commutes with \hat{z} . Using

$$[\hat{y}, \hat{p}_y] = \hat{y}\hat{p}_y - \hat{p}_y\hat{y} = i$$

the commutators in the previous expression can be simplified as, for example :

$$\begin{split} \left[\hat{p}_{y}^{2}, \hat{y} \right] &= \hat{p}_{y} \hat{p}_{y} \hat{y} - \hat{y} \hat{p}_{y} \hat{p}_{y} \\ &= \hat{p}_{y} (\hat{y} \hat{p}_{y} - i) - \hat{y} \hat{p}_{y} \hat{p}_{y} \\ &= \hat{p}_{y} \hat{y} \hat{p}_{y} - i \hat{p}_{y} - \hat{y} \hat{p}_{y} \hat{p}_{y} \\ &= (\hat{y} \hat{p}_{y} - i) \hat{p}_{y} - i \hat{p}_{y} - \hat{y} \hat{p}_{y} \hat{p}_{y} \\ &= -2i \hat{p}_{y}. \end{split}$$

Similarly, $[\hat{p}_z^2, \hat{z}] = -2i\hat{p}_z$, and therefore Equation (1) becomes

$$\left[\hat{\mathbf{p}}^{2}, \hat{L}_{x}\right] = \left[\hat{p}_{y}^{2}, \hat{y}\right] \hat{p}_{z} - \left[\hat{p}_{z}^{2}, \hat{z}\right] \hat{p}_{y} = -2i\hat{p}_{y}\hat{p}_{z} + 2i\hat{p}_{z}\hat{p}_{y} = 0.$$

(b) Since the Pauli spin matrices do not depend on the spatial coordinates, it is fairly straightforward to see that all three components of the spin operator commute with $\hat{\mathbf{p}}^2$.

3) Spin and angular momentum of a relativistic Dirac particle

(a) As in the previous exercise, we will compute the commutator between the Dirac Hamitonian \hat{H}_D and the first component of the angular momentum \hat{L}_x :

$$\begin{split} \left[\hat{\mathbf{H}}_{\mathrm{D}}, \hat{L}_{x} \right] &= \left[\boldsymbol{\alpha} \cdot \hat{\mathbf{p}} + \beta m, \hat{y} \hat{p}_{z} - \hat{z} \hat{p}_{y} \right] \\ &= \left[\boldsymbol{\alpha} \cdot \hat{\mathbf{p}}, \hat{y} \hat{p}_{z} - \hat{z} \hat{p}_{y} \right] \\ &= \left[\alpha_{x} \hat{p}_{x} + \alpha_{y} \hat{p}_{y} + \alpha_{z} \hat{p}_{z}, \hat{y} \hat{p}_{z} - \hat{z} \hat{p}_{y} \right] \end{split}$$

Given the commutator between \hat{x}_j and \hat{p}_k ,

$$[x_j, p_k] = \delta_{jk}i, \tag{2}$$

the above expression can be simplified as

$$\begin{aligned}
\left[\hat{\mathbf{H}}_{\mathrm{D}}, \hat{L}_{x}\right] &= \left[\alpha_{y} \hat{p}_{y} + \alpha_{z} \hat{p}_{z}, \hat{y} \hat{p}_{z} - \hat{z} \hat{p}_{y}\right] \\
&= \left[\alpha_{y} \hat{p}_{y}, \hat{y} \hat{p}_{z}\right] - \left[\alpha_{z} \hat{p}_{z}, \hat{z} \hat{p}_{y}\right] \\
&= \alpha_{y} \hat{p}_{z} \left[\hat{p}_{y}, \hat{y}\right] - \alpha_{z} \hat{p}_{y} \left[\hat{p}_{z}, \hat{z}\right],
\end{aligned} (3)$$

where the last equality follows from the fact that \hat{p}_y and \hat{p}_z commute. Using again Equation (2), the commutator in Equation (3) can be finally written as

$$\left[\hat{\mathbf{H}}_{\mathrm{D}}, \hat{L}_{x}\right] = -i\alpha_{y}\hat{p}_{z} + i\alpha_{z}\hat{p}_{y} = -i(\alpha_{y}\hat{p}_{z} - \alpha_{z}\hat{p}_{y}) = -i(\boldsymbol{\alpha} \times \hat{\mathbf{p}})_{x}.$$

After repeating a similar computation for \hat{L}_y and \hat{L}_z , the final result for the angulat momentum is

$$\left[\hat{\mathbf{H}}_{\mathrm{D}}, \hat{\mathbf{L}}\right] = -i(\boldsymbol{\alpha} \times \hat{\mathbf{p}}).$$

The spin operator acting on a 4-component Dirac spinor is

$$\hat{\mathbf{S}} = \frac{1}{2} \mathbf{\Sigma} = \frac{1}{2} \begin{pmatrix} \boldsymbol{\sigma} & 0 \\ 0 & \boldsymbol{\sigma} \end{pmatrix}.$$

In order to compute the commutator between the Dirac Hamiltonian and the three component of $\hat{\mathbf{S}}$, one needs to derive the comutators between the Σ matrices and the matrices appearing in $\hat{\mathbf{H}}_{\mathrm{D}}$, $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$, which in the Dirac-Pauli representation correspond to

$$\alpha_j = \begin{pmatrix} 0 & \sigma_j \\ \sigma_j & 0 \end{pmatrix}$$
 and $\beta = \begin{pmatrix} \mathbf{1} & 0 \\ 0 & -\mathbf{1} \end{pmatrix}$.

It is straightforward to show that $[\beta, \Sigma_k]$. Then

$$[\alpha_{j}, \Sigma_{k}] = \begin{pmatrix} 0 & \sigma_{j} \\ \sigma_{j} & 0 \end{pmatrix} \cdot \begin{pmatrix} \sigma_{k} & 0 \\ 0 & \sigma_{k} \end{pmatrix} - \begin{pmatrix} \sigma_{k} & 0 \\ 0 & \sigma_{k} \end{pmatrix} \cdot \begin{pmatrix} 0 & \sigma_{j} \\ \sigma_{j} & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & \sigma_{j}\sigma_{k} \\ \sigma_{j}\sigma_{k} & 0 \end{pmatrix} - \begin{pmatrix} 0 & \sigma_{k}\sigma_{j} \\ \sigma_{k}\sigma_{j} & 0 \end{pmatrix} = \begin{pmatrix} 0 & [\sigma_{j}, \sigma_{k}] \\ [\sigma_{j}, \sigma_{k}] & 0 \end{pmatrix}$$

$$= 2i\epsilon_{jkl} \begin{pmatrix} 0 & \sigma_{l} \\ \sigma_{l} & 0 \end{pmatrix} = 2i\epsilon_{jkl} \alpha_{l}$$

$$(4)$$

where the last step follows from the commutation relation of the Pauli spin matrices $[\sigma_j, \sigma_k] = 2i\epsilon_{jkl} \sigma_l$. Given the commutator in Equation 4, one can easily compute the

commutator between the Dirac Hamiltonian and the first component of the Spin:

$$\begin{split} \left[\hat{\mathbf{H}}_{\mathrm{D}}, \hat{S}_{x}\right] &= \frac{1}{2} \left[\alpha_{y} \hat{p}_{y} + \alpha_{z} \hat{p}_{z}, \Sigma_{x}\right] \\ &= \frac{1}{2} \hat{p}_{y} \left[\alpha_{y}, \Sigma_{x}\right] + \frac{1}{2} \hat{p}_{z} \left[\alpha_{z}, \Sigma_{x}\right] \\ &= \frac{1}{2} \hat{p}_{y} 2i \epsilon_{yxz} \alpha_{z} + \frac{1}{2} \hat{p}_{z} 2i \epsilon_{zxy} \alpha_{y} \\ &= -i \alpha_{z} \hat{p}_{y} + i \alpha_{y} \hat{p}_{z} \\ &= i (\alpha_{y} \hat{p}_{z} - \alpha_{z} \hat{p}_{y}) = i (\boldsymbol{\alpha} \times \hat{\mathbf{p}})_{x}. \end{split}$$

A similar computation can be carried out for \hat{S}_y and \hat{S}_z to show that

$$\left[\hat{\mathbf{H}}_{\mathrm{D}}, S_{x}\right] = i(\boldsymbol{\alpha} \times \hat{\mathbf{p}}).$$

It is worth noting that in non-relativistic quantum mechanics (previous exercise), both spin and angular momentum commute with the free-particle Hamiltonian, while in relativistic quantum mechanics only the sum $\hat{\mathbf{J}} = \hat{\mathbf{L}} + \hat{\mathbf{S}}$ does. This implies that, in general, it is not possible to identify a complete set of Dirac spinor states that are simultaneously eigentsates of $\hat{\mathbf{H}}_{\mathrm{D}}$ and e.g. \hat{S}_z , as was instead the case for 2-component spinors in non-relativistic quantum mechanics. However, in the specific case where the particle momentum is aligned with the z axis, the solutions to the Dirac equation (which are eigenstates of $\hat{\mathbf{H}}_{\mathrm{D}}$) are also eigenstates of \hat{S}_z with eigenvalues $\pm \frac{1}{2}$, as proven in the second part of the exercise.

(b) If the momentum ${f p}$ is parallel to the z axis, the four particle solutions to the Dirac equation reduce to

$$u_{1} = \sqrt{E + m} \begin{pmatrix} 1\\0\\\frac{p}{E + m}\\0 \end{pmatrix}$$

$$u_{2} = \sqrt{E + m} \begin{pmatrix} 0\\1\\0\\\frac{-p}{E + m} \end{pmatrix}$$

$$u_{3} = \sqrt{E + m} \begin{pmatrix} \frac{p}{E - m}\\0\\1\\0 \end{pmatrix}$$

$$u_{4} = \sqrt{E + m} \begin{pmatrix} 0\\\frac{-p}{E - m}\\0\\1 \end{pmatrix}$$

where u_1 and u_2 are the positive energy solutions with $E = \sqrt{\mathbf{p}^2 + m^2}$, while u_3 and u_4 are the negative energy solutions with $E = -\sqrt{\mathbf{p}^2 + m^2}$. Given the operator for the third component of the spin

$$\hat{\mathbf{S}}_{\mathbf{z}} = \frac{1}{2} \Sigma_{z} = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix},$$

it is straightforward to show that

$$\hat{S}_{z}u_{1} = \frac{1}{2}u_{1}$$

$$\hat{S}_{z}u_{2} = -\frac{1}{2}u_{2}$$

$$\hat{S}_{z}u_{3} = \frac{1}{2}u_{3}$$

$$\hat{S}_{z}u_{4} = -\frac{1}{2}u_{4}.$$

4) Helicity

In the Dirac-Pauli representation

$$\alpha_j = \begin{pmatrix} 0 & \sigma_j \\ \sigma_j & 0 \end{pmatrix}$$
 and $\beta = \begin{pmatrix} \mathbf{1} & 0 \\ 0 & -\mathbf{1} \end{pmatrix}$.

and since β contains the identity matrix it is clear that $[\hat{h}, m\beta] = 0$. Therefore, it is only necessary to consider the commutator $[\hat{h}, \boldsymbol{\alpha} \cdot \hat{\mathbf{p}}]$.

$$\begin{split} \left[\hat{h},\hat{H}_{D}\right] &= \left[\hat{h},\boldsymbol{\alpha}\cdot\boldsymbol{\hat{\mathbf{p}}}\right] = \frac{1}{2p} \left[\begin{pmatrix} \boldsymbol{\sigma}\cdot\boldsymbol{\hat{\mathbf{p}}} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{\sigma}\cdot\boldsymbol{\hat{\mathbf{p}}} \end{pmatrix} \begin{pmatrix} \boldsymbol{0} & \boldsymbol{\sigma}\cdot\boldsymbol{\hat{\mathbf{p}}} \\ \boldsymbol{\sigma}\cdot\boldsymbol{\hat{\mathbf{p}}} & \boldsymbol{0} \end{pmatrix} - \begin{pmatrix} \boldsymbol{0} & \boldsymbol{\sigma}\cdot\boldsymbol{\hat{\mathbf{p}}} \\ \boldsymbol{\sigma}\cdot\boldsymbol{\hat{\mathbf{p}}} & \boldsymbol{0} \end{pmatrix} \begin{pmatrix} \boldsymbol{\sigma}\cdot\boldsymbol{\hat{\mathbf{p}}} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{\sigma}\cdot\boldsymbol{\hat{\mathbf{p}}} \end{pmatrix} \right] \\ &= \frac{1}{2p} \left[\begin{pmatrix} \boldsymbol{0} & (\boldsymbol{\sigma}\cdot\boldsymbol{\hat{\mathbf{p}}})^{2} \\ (\boldsymbol{\sigma}\cdot\boldsymbol{\hat{\mathbf{p}}})^{2} & \boldsymbol{0} \end{pmatrix} - \begin{pmatrix} \boldsymbol{0} & (\boldsymbol{\sigma}\cdot\boldsymbol{\hat{\mathbf{p}}})^{2} \\ (\boldsymbol{\sigma}\cdot\boldsymbol{\hat{\mathbf{p}}})^{2} & \boldsymbol{0} \end{pmatrix} \right] \\ &= \boldsymbol{0}. \end{split}$$

4