
Particle Physics 1 : Exercise 12

1) Isospin in strong interaction decays
This is an interesting application of the use of isospin in strong interactions. We have asser-
ted that the SU(2) flavour symmetry is an exact symmetry of the strong interaction. One
consequence is that isospin and the third component of isospin are conserved in strong interac-
tions. Furthermore, from the point of view of the strong interaction ∆−, ∆0, ∆+ and ∆++ are
indistinguishable. The amplitudes for the above decays can be written as

M(∆ → πN) ∼ ⟨πN |Hstrong|∆⟩,

where N indicates a nucleon - either a proton or a neutron depending on the decay. In the case
of an exact SU(2) light quark flavour symmetry the above relation can be rewritten as

M(∆ → πN) ∼ A⟨Φ(πN)|Φ(∆)⟩

where A is the same constant for all the decays of the type ∆ → πN and Φ represents the isospin
wavefunction. Here ⟨Φ(πN)|Φ(∆)⟩ expresses the conservation of isospin in the interaction. The
question therefore boils down to determining the isospin values for the states involved. Consider
the decay ∆− → π−n, which in terms of isospin states corresponds to
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The decay rate will depend on the isospin of the combined π−n system. Since I3 is an additive
quantum number, the third component of the isospin of the combined π−n system is −3/2 and
this implies that the total isospin must be at least 3/2. But since the total isospin I lies between
|1 − 1/2| < I < |1 + 1/2|, the isospin of the π−n system is uniquely identified as
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Consequently, the amplitude for the decay is given by

M(∆− → π−n) ∼ A⟨Φ(π−n)|Φ(∆−)⟩ = A⟨Φ
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Now consider the decay of the ∆0 with the isospin state
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The decomposition of this state into the equivalent πN system (an isospin-1 state combined
with an isospin-1/2 state) can be achieved using isospin ladder operators. Starting from the
unique assignment
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The isospin rising operator gives :
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or equivalently
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Thus the decay amplitudes of the ∆0 can be written

M(∆0 → π0n) ∼ A⟨Φ(π0n)|
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and
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Since decay rates are proportional to the amplitude squared

Γ(∆− → π−n) : Γ(∆0 → π−p) : Γ(∆0 → π0n) = 3 : 1 : 2.

The other ratios follow from the same arguments.

2) Leptonic decays of neutral vector mesons
The underlying process is the QED annihilation process qq → e+e−, where the matrix element
can be expressed as

M(qq → e+e−) ∼ ⟨e+e−|Q̂q|qq⟩ = AQq,

where A is assumed to be a constant and Qq is the charge of the quark in the annihilating
quark-antiquark pair. For the ϕ meson, which is a pure ss state, the matrix element

M(ϕ → e+e−) ∼ ⟨e+e−|Q̂q|ss⟩ = AQs = −1
3A.

For the ρ0 with wavefunction |ρ0⟩ = 1√
2(uu − dd), the phases of the two components are

important and the total amplitude depends on the coherent sum of the contributions from the
decays of the uu and dd. Here the matrix element can be written as

M(ρ0 → e+e−) ∼ ⟨e+e−|Q̂q|
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Similarly

M(ω → e+e−) ∼ ⟨e+e−|Q̂q|
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Neglecting the small differences in phase space, Γ ∝ M2, and so

Γ(ρ0 → e+e−) : Γ(ω → e+e−) : Γ(ϕ → e+e−) ≈ 9 : 1 : 2.
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