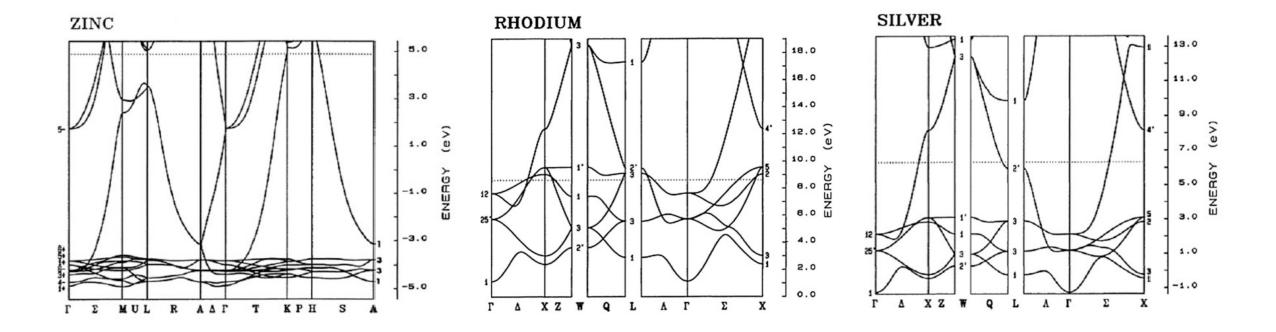

Magnetic alloy

We want to form a magnetic alloy with high magnetic moment mixing Co with one of these three elements, which are not magnetic in bulk: Zn, Rh, Ag.


Considering their band structure, class them according to the suitability.

Solution: Magnetic alloy

The magnetic moment of the alloy is an average of the magnetic moment of Co and of the second element. The necessary condition to have a contribution of the second element is a high d-state DOS at the Fermi level. Then the three elements can be classified in the following order:

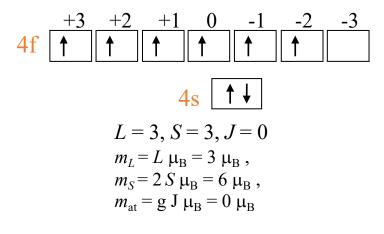
Rh Ag Zn

Magnetic moments

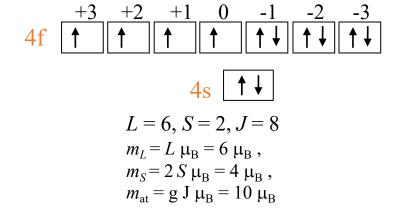
We want to evaluate the magnetic moment of atoms in several situations. We apply an external magnetic field B applied along the z direction and for simplicity we assume T = 0 K.

- 1) Calculate the magnetic moment of a free-standing Co (Ar 3d⁷ 4s²), Sm (Xe 4f ⁶ 6s²) and Dy (Xe 4f ¹⁰ 6s²) atom
- 2) Calculate the magnetic moment of a Co atom in bulk Co knowing that $n_{3d}(\downarrow) = 5.0$, $n_{3d}(\uparrow) = 3.3$, $n_{4s}(\downarrow) = 0.35$, $n_{4s}(\uparrow) = 0.35$ where n_{3d} and n_{4s} the number of electrons with spin down/up in the respective band
- 3) Consider the composites $SmCo_5$ and $DyCo_5$. In both composites the magnetic moment of the Co atoms is anti-parallel to the magnetic moment of the rare earth element. Assume for Co the electronic configuration $n_{3d}(\downarrow) = 5.0$, $n_{3d}(\uparrow) = 3.0$, $n_{4s}(\downarrow) = 0.35$, $n_{4s}(\uparrow) = 0.35$. For the rare earth assume the standard (Xe 4f N-1 5d¹ 6s²) configuration. In addition, the electron in the 5d band occupies the orbital with $L_z = 0$ and its spin is parallel to the spin of the 4f shell. What is the magnetic moment per unit formula?




FIG. 1. Unit cell of the hexagonal intermetallic SmCo₅.

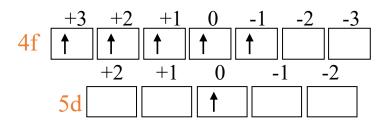
1)


Ground state of Co (Ar $3d^7 4s^2$) $\begin{array}{cccc}
+2 & +1 & 0 & -1 & -2 \\
3d \uparrow & \uparrow & \uparrow & \uparrow \downarrow & \uparrow \downarrow
\end{array}$ $\begin{array}{ccccc}
4s & \uparrow \downarrow & \\
L = 3, S = 3/2, J = 9/2 \\
m_L = L & \mu_B = 3 & \mu_B \\
m_S = 2 & S & \mu_B = 3 & \mu_B
\end{array}$

 $m_{\rm at} = g J \mu_{\rm B} = 6 \mu_{\rm B}$

Ground state of Sm (Xe 4f ⁶ 6s²)

Ground state of Dy (Xe 4f ¹⁰ 6s²)

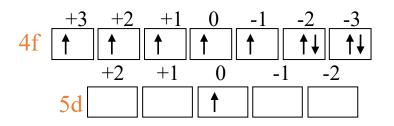


In bulk the orbital moment is quenched; thus, L=0 Using the occupation number $n_{3d}(\downarrow)=5.0$, $n_{3d}(\uparrow)=3.3$, $n_{4s}(\downarrow)=0.35$, $n_{4s}(\uparrow)=0.35$, for the spin we obtain a contribution of $m_S=2\frac{1}{2}1.7=1.7$ μ_B from the 3d band and a contribution of $m_S=0$ from the 4s band. Thus, $m_{at}=1.7$ μ_B

Solution: magnetic moments

3) Co contribution: in bulk the orbital moment is quenched thus L=0 Using the occupation number $n_{3d}(\downarrow)=5.0$, $n_{3d}(\uparrow)=3.0$, $n_{4s}(\downarrow)=0.35$, $n_{4s}(\uparrow)=0.35$, for the spin we obtain a contribution of $m_S=2\frac{1}{2}$ 2=2.0 μ_B from the 3d band and a contribution of $m_S=0$ from the 4s band. Thus, $m_{Co}=2$ μ_B in both composite. Rare earth contribution can be calculated with Hund's rules

Ground state of Sm (Xe 4f ⁵ 5d¹ 6s²)



4f:
$$L = 5$$
, $S = 5/2$, $J = 5/2$
 $m_{4f} = g J \mu_B = 5/7 \mu_B$
5d: $L = 0$, $S = 1/2$, $J = 1/2$
 $m_{5d} = g J \mu_B = 1 \mu_B$
 $m_{6s} = g J \mu_B = 0 \mu_B$
 $m_{Sm} = 2/7\mu_B$ (S_{5d} is parallel to S_{4f} but since L_{4f} > S_{4f}, J_{4f} is parallel to L_{4f} and antiparallel to S_{4f})

$$m_{\rm u.f.} = 5 m_{\rm Co} - m_{\rm Sm} = 68/7 \mu_{\rm B}$$

Ground state of Dy (Xe 4f 9 5d¹ 6s²)

4f:
$$L = 5$$
, $S = 5/2$, $J = 15/2$
 $m_{4f} = g J \mu_B = 10 \mu_B$
5d: $L = 0$, $S = 1/2$, $J = 1/2$
 $m_{5d} = g J \mu_B = 1 \mu_B$
 $m_{6s} = g J \mu_B = 0 \mu_B$
 $m_{Dy} = 11\mu_B$

$$m_{\rm u.f.} = 5 m_{\rm Co} - m_{\rm Dy} = -1 \mu_{\rm B}$$