Exercise

a) Photolithography

An excimer laser produces radiation at 157 nm, and optics with a numerical aperture of 0.8 is available. What is the smallest size of feature you could make in a resist?

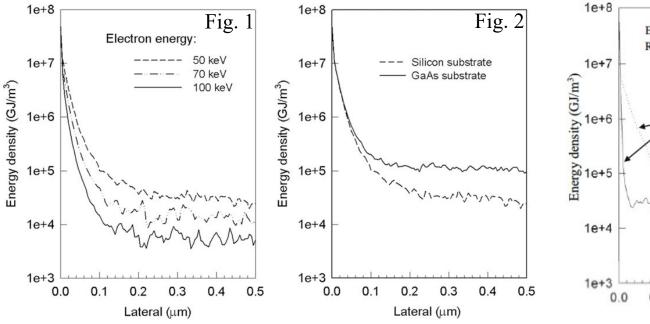
b) Photolithography

A way to increase the resolution in photolithography is to increase the numerical aperture *NA*. How could one achieve that without changing the lens diameter?

c) e-beam lithography Calculate the wavelength of electrons with E = 100 keV.

d) e-beam lithography

The point spread function (PSF) represents the spatial distribution of the energy deposited in the resist from a single point of incidence.


Figure 1 shows a comparison of PSF at different electron energies (0.5 µm resist thickness, Si substrate).

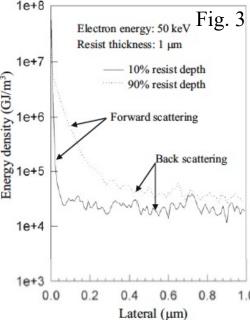
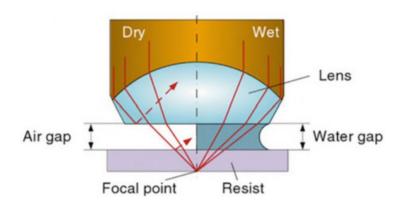

Figure 2 shows a comparison of PSF for different substrate materials (50 keV beam energy, 0.5 µm resist thickness).

Figure 3 shows a comparison of PSF at different depths in the resist (50 keV beam energy, 1 µm resist thickness).

We want to achieve the highest resolution. Is it better to use:

- higher or lower electron energy?
- a denser or a lighter substrate as support for the resist?
- a thicker or a thinner resist film?

Zheng Cui, Nanofabrication, Principles, Capabilities and Limits, Springer 2024


Solution - Exercise

a)
$$R = k_1 \frac{\lambda}{NA} \qquad \text{with } \lambda = 157 \text{ nm and } NA = 0.8, \text{ assuming } k_1 = 0.5 \longrightarrow R \approx 100 \text{ nm}$$

b)
$$NA = n \sin \theta$$

It is possible to increase NA by using **immersion (wet) optical lithography**: changing the medium between the resist and the lens, and choosing a medium with higher refractive index n (typically a liquid)

air:
$$n = 1$$

water: n = 1.437

c) e-beam lithography

$$\lambda = \frac{1.226}{\sqrt{eV}}$$
 nm with $E = 100 \text{ keV} \rightarrow \lambda \approx 3.9 \text{ pm}$

d)

- Figure 1 shows that the energy deposited away from the point of incidence is lower for electrons with higher energy \rightarrow it is better to use high electron energy (the resist is modified "only" in the desired region).
- Figure 2 shows that for Si (lighter) the energy deposited away from the point of incidence is lower than for GaAs (heavier) → it is better to use light substrates.
- Figure 3 shows that going deeper in the resist the deposited energy spreads more in space → it is better to use thin resist layers