
1) Control of the 
oxidation at the interface

3) Control of the layer purity
Sources of impurities: 
evaporators, evaporating 
materials, UHV residual gas 
(in 10-6 mbar every second 
each surface atomic site is 
touched by an atom of the 
residual gas), etc.

Fe
Mg
O

2) Control of the 
magnetization of the 
different layers
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Fe/MgO interface in MTJ



Graphene band structure

Free-standing Surface supported

How do we measure the 
graphene band structure?

K. Novoselov , Nat. Mater. 6, 720 (2007) 2

?



Spectroscopy

Valence DOS → UPS

Band structure → ARUPS (ARPES)

Chemical composition → XPS, Auger

Magnetism → XMCD

Bond orientation → XLD

Structure modification → EXAFS
…
…
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Spectroscopy techniques

Technique Probe Measure
Auger electron  electron
XPS, UPS, ARPES photon electron
XAS, EXAFS photon photon / electron

E = hn = hc/l; c = 3 108 m/s; h = 6.6 10-34 Js

Electromagnetic spectrum

EXAFS
XAS -XPS

UPS

The choice of the technique depends on the information we want to acquire
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The Auger process

Ekin = Ebind(K) – Ebind(L1) – Ebind(L3) -F

Ebind(Li) and Ebind(K) depend on the elements →
Ekin does not depend on Eincident

chemical sensitivity

Ekin

excitation relaxation
radiative Auger       

Ejected electron Vacuum 
level

Ejected electron

KL1L3

Auger spectroscopy is based upon an
electron in - electron out process.

e-

e- e-
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simple description neglecting screening and final state effects

Ebind : binding energy of the electronic level
typically referred to EF and not to Evac →
one needs to consider also the work function F (3-5 eV)



electron gun
channeltrongrids

sample

electrons

Auger experimental setup

Electron energy: in 1- 10 keV
out 0.01 – 2 keV

Auger spectrum: number of emitted electrons as a function of their kinetics energy
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detection limit ~ 0.5% of a monolayer



Auger spectrum

Derivative modeCounting mode

The monotonic background is due to multi-scattered electrons

main Auger transitions for the 
different chemical elements

Example: MgO

The energy transitions are characteristic of 
the element → chemical sensitivity
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Surface sensitivity

Auger electrons (detected at surface) coming from depth z:
I(z) = I(0) exp(-z/l)

Total Auger electron current measured at surface:
I = ò0

z
I(z) dz = I(0) l (1-exp(-z/l))

l = electron mean free path

Depth sensitivity: 95% of the signal coming from a film with infinite 
thickness D. How much is D?
I(D) = I(0) l (1-exp(-D/l)) = 0.95 I(0) l
→ D = - l ln(0.05) ~ 3 l

surface sensitivity is given by the limited 
mean free path of the outcoming electrons
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No Fe signal:
annealing of the room T grown sample gives rise to a continuous, pore
free, layer.

J. Appl. Phys. 97, 036104 (2005)

Example: MgO/Fe(001)

Intense Fe absorption peaks: 
MgO does not wet completely the Fe bottom electrode (columnar growth 
with pits) 

Weak Fe absorption peaks: 
rough MgO layer
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Exciting particle: photon

Emitted particle: electron

Photoelectron spectroscopy / Photoemission

The energy of a photon is given by the 
Einstein relation: 

E = h n

h - Planck constant ( 6.62 x 10-34 J s )
n - frequency (Hz) of the radiation

Ekin = hn – Ebind – F

Ekin is the kinetic energy of the emitted electron 
→ it depends on the level that has been excited

e-
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XPS vs. UPS: core vs. valence state excitation

X ray photons  (0.2 –10 keV) → to investigate core levels
UV photons     (10 - 100 eV)  → to investigate valence levels

although energy distinction between core and valence is not strict 
(depends on element) 

XPS
X-ray photoelectron spectroscopy

UPS
Ultraviolet photoelectron spectroscopy

e-hn

e-

hn

valence levels 
(0 -10 eV)

core levels
0.1 – 10 keV

EF
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Photon penetration depth > 1-10 µm 
-> surface sensitivity is given by the reduced mean free path of the outcoming electrons

Surface sensitivity
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Example XPS spectrum: MgO/Fe

hn = 1486 eV

N
(E

)  
   

  

Ekin (eV)        

Ebind (eV)     

Auger electrons are also 
visible. 
They can be recognized 
since their energy 
position does not depend 
on the energy of the 
photons

Ex.: deduce the energy of O 1s (K edge) : Ebind = hn – Ekin (-F) = 1486 – 946 = 540 eV
13
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2p levels are split by the spin-orbit coupling 
j = l+s, l-s 
l=1
s=1/2
j= 3/2, 1/2
based on degeneracy (2j+1), intensity ratio:
2p1/2 : 2p3/2 = 1:2
The anti-parallel alignment is more 
favorable, has a lower energy and therefore 
appears at higher binding energy

+3 oxidation state: 
Fe “loses” the two 4s electrons and one 3d electron

chemical shift correlated with overall charge on atom:
reduced charge →  reduced coulomb screening 
→ increased binding energy 
(mainly an initial state effect)

XPS spectrum: Fe 2p (L2, L3); chemical shift 
atomic:
[Ar] 3d6 4s2

iron(III) oxide
hematite

metallic iron

peak energy  → oxidation state



XPS spectrum: MgO/Fe, Fe 2p

15Sicot et al. Phys. Rev. B 68, 184406 (2003)

thin Fe layer

thick Fe layer

thin MgO on Fe layer
no modification of the Fe 2p spectrum 
upon MgO growth (no shift, only the 
intensity changes) 
→ adding the MgO does not oxidize the Fe 
surface



Example UPS spectrum: MgO/Fe
- MgO is an insulator with a gap of 8 eV
- Fe electronic structure: [Ar] 3d6 4s2

Sicot et al. Phys. Rev. B 68, 184406 (2003)

Spectral intensity 
dominated by the 
MgO contribution

Fe

Fe + MgO

hn = 40.8 eV
D

Spectral intensity 
dominated by the 
Fe contribution 
(no MgO state in 
the energy gap)Spectrum of Fe before 

MgO growth
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Modification of the Fe DOS 



UPS vs ARUPS (or ARPES)

UV photons     (10 - 100 eV)  → to investigate valence levels
ARUPS: Angle Resolved UPS
ARPES: Angle Resolved PhotoElectron Spectroscopy 

ARPES can measure the wave vector k 
and the energy at the same time (band 

structure) 

STM gives only access to the DOS as a 
function of energy, but no information on k 
(with exceptions, as for example the 
standing wave of 2D gas at metal surfaces )
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UPS is k-integrated 



ARUPS (or ARPES)
Three-step model (valid also for XPS and UPS):
1) The electron is excited from an initial to a final state within the crystal;
2) The electron travels through the solid towards the surface without scattering;
3) The electron crosses the surface and is emitted into the vacuum with a 
certain kinetic energy Ekin.

ℏ𝒌⫽,# = ℏ𝒌⫽,$ + 𝑮

photon momentum negligible: pe = ћk= (2mEkin)1/2 -> ~ 5 10-25 for 1 eV electron
phv = E/c -> ~ 5 10-28 for 1 eV photon

Energy conservation: 𝐸𝑘𝑖𝑛 = ℎ𝜈 − 𝐸𝑏𝑖𝑛𝑑 − Φ

ћ𝑘⫽,# = 2𝑚(ℎ𝜈 − 𝐸%#&' −Φ)𝑠𝑖𝑛𝜃

ℏ𝑘⫽,$ = 2𝑚𝐸(#&𝑠𝑖𝑛𝜃

momentum conservation: due to symmetry translation breaking at the 
surface (only 2D), only the momentum component parallel to the surface is 
conserved, modulo a reciprocal surface vector:
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The k||-vector of surface states is fully determined by the k||-vector of the photoemitted 
electron. The perpendicular component of the k-vector of bulk states remains unknown, 
but can be established by special techniques (approx: free electron final state; exact: 
triangulation, Bragg plane method,...9s

Measurement of E vs k 
Band structure

q



ARUPS (or ARPES)

Picture from https://fr.wikipedia.org/wiki/Spectroscopie_photo%C3%A9lectronique_r%C3%A9solue_en_angle
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UPS ARUPS

Integrated in k-space Resolved in k-space:
band structure

20

Intensity (counts)



Example: 2D system, Ag(111) Surface State

Es = EF – E0 + 1/2m* (ħk)2

m* -> effective mass of the surface state electron

Surface states behave likes a 2D gas of 
free electrons
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Example: confined surface states on Au(788)

// to the steps ^ to the steps

k^ = np/L
En = EF – E0 + n2/2m* (ħp/L)2

One dimensional quantum well of width L 
perpendicular to the steps

L = terrace size = 3.8 nm

A. Mugarza et al., Phys. Rev. Lett. 87, 107601 (2001)

Yk (r) » exp(ik//y) sin (k^x) 
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Graphene p bands
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sp2 hybridization to form s bonds in the graphene plane

pz orbital stick out perpendicular to the surface and form p orbitals



Graphene
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Tight-binding description of the p bands (originating from pz ) 

- triangular Bravais lattice with a base 
formed of two atoms (A and B) 
- A and B sublattices
- for each atom, the 3 nearest neighbors 
belong to the other sublattice
- non-zero hopping parameter only for nn
- starting from Bloch wavefunctions 
localized on A and B, we build the 
wavefunctions describing the p bands
- find the expression for their energy vs k 
in the FBZ



Graphene

25→

What about filling? 
- N unit cells → N values of k in FBZ → 2N states 
counting the spin
- there are two bands
→ overall 4N states

- each C atom contributes one pz (→ p) orbital with 
one electron
- two C atoms per unit cell 
→ 2N electrons

→ EF is in the middle of the two bands

graphene is a semimetal (or zero-gap semiconductor)
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Graphene
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Around K and K’  points, the energy 
dispersion is linear, very different 
from the usual quadratic 
dependency.

It can be shown that (wavevector k 
centered on K or K’):

for ideal, free-standing graphene EF coincides with the Dirac points

𝐸 = ±ℏ𝑣!𝑘

𝑣! =
3 𝛾 𝑎
2ℏ



Graphene on SiC

Nature Materials 6, 183–191 (2007)

Epitaxial graphene

The Dirac point (ED) is at Fermi level in free standing graphene

On SiC ED = -0.5 eV (below Fermi level) due to graphene-substrate hybridization

Free standing
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Gap opening ?
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graphene: semimetal or zero-gap semiconductor

technological advantages for graphene to be a 
semiconductor instead of a semimetal, specifically in 
electronic applications (transistor)

possible paths: 

- geometrically confine graphene into nanoribbons or 
quantum dots
- grow graphene on substrates that induce lattice 
potentials that open a gap 

- bilayer graphene + field effect
- twisted bilayer graphene
- bilayer graphene + strain

- other 2D materials (h-BN, MoS2, ...)

doi.org/10.1038/nature08105

Widely tunable bandgap in bilayer graphene 


