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Outline:
• Introduction: What is SPM, history

• STM

• AFM

• Image treatment

• Advanced SPM techniques

• Applications in semiconductor research 
and industry
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What is SPM ?
• Scanning Probe Microscopy :

The characterization of a sample by scanning its surface with a probe, at a small 
distance

Usually, only surface properties are observable
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How does SPM compare with other 
microscopy techniques ?

Microscope Optical Confocal Interferen
ce

SEM TEM STM AFM SNOM

XY resolution 400 nm 150 nm 250 nm 1 nm 0.05 nm 0.1 nm (<)1-10 nm <50 nm

Z resolution - 1 nm 0.1 nm - - 0.01 nm 0.01 nm (0.01nm)

Ambience air 
(liquid)

air (liquid) air (liquid) vacuum vacuum vacuum 
(air,liq.)

air (liquid) air (liquid)

Sample 
preparation

none none none none / 
coating

polishing, ion 
milling

none / UHV 
cleaving

none none

Damage to 
sample

none none none Contami-
nation,(heati
ng)

Contami-
nation, 
heating

none none 
(scratch)

none

Price (kFr) 5-30 50-200 50-200 200-700 500-5000 70-300 50-300 70-300



TEM
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Advantages of SPM
• 3D imaging

• High spatial and 
vertical resolutions

• No sample 
preparation

• Simple to operate

• Low-cost

• Main disadvantage : 
slow (5-20 min/image)
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A (short) history of SPM

Source: Wikipedia

To get an idea of the surface of a sample, we can:

• Parallel reading

• (High resolution)

• Serial reading

• (Low resolution)

Or:

• Touch it (mechanical scanning)

• Observe it (optical imaging)
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Another old type of SPM: 
reading data by mechanical 

probe

Scanner 
(rotating+ad

vancing
cylinder)

Tip+reading

Stabilizer

Surface 
features 

(grooves)

Scanner 
(rotating 
cylinder)Tip

Surface 
features 

(grooves)

Source: Wikipedia
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A more modern instrument: The Stylus 
Profilometer (“Alpha-step”)

• Scans a line profile of the surface with a 
mechanical tip at a low force

• Measures the height profile across the line scan

Source: CMI-EPFL
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Typical height profiles
• Scan length: up to 100 mm

• Z-resolution: 5-10 nm

• X-resolution: ~10 µm (due to tip size)

• Scan time: 10-100 s

Source: CMI-EPFL

X. Wanga, L.X. You, D.K. Liu, C.T. Lin, X.M. Xie, M.H. Jiang, 
Physica C 474, 13 (2012)



10

The challenge of modern SPM:
How to get nm resolution in all dimensions 

(X,Y,Z)?

M.-T Lin, J Shen, W Kuch, H Jenniches, M Klaua, C.M Schneider, J Kirschner, Surface Science 410, 2–3, 290 (1998)



11

First attempt: The Topografiner (1972)

Student presentation:

Source: CMI-EPFL

R. Young, J. ward, F. Scirer, Rev. Sci. Inst. 43, 999 (1972)
“A noncontacting instrument for measuring the microtopography
of metallic surfaces”
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Let's think: How to get nm 
resolution?

Potential problems:

1. Tip size

2. High-resolution XY scanning

3. Non-destructive

4. Keep distance from sample

5. Vibrations

6. Thermal stability

Potential problems:

1. Tip size

2. High-resolution XY scanning

3. Non-destructive

4. Keep distance from sample

5. Vibrations

6. Thermal stability

Solutions:

1. Short-range interactions

2. Piezo scanner

3. Non-contact

4. Height feedback

5. Rigid structure, isolation

6. Compensation
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How to get nm resolution:
1. Short-range interactions: Do you know any?

• Quantum-mechanical electron tunneling:   STM

• Van-der-Waals forces:
AFM
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• Nuclear (strong) forces
But range is

too short!
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First working STM:
Binnig & Rohrer, 1982

Student presentation:

G. Binning, H. Rohrer, Ch. Gerber, and E. Weibel,
Phys. Rev. Lett. 49, 57 (1982)

"Surface Studies by Scanning Tunneling Microscopy"
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Quantum Tunneling between metals
• Electrons in metals fill up energy levels to 

the Fermi level, which is about 5 eV (the 
work function) below the Vacuum level F.

• External potential between metals shifts the 
relative Fermi levels, so that electrons could 
pass from full (left) to empty (right) levels, 
but… the energy barrier is too high! 

• When the metals are close enough, electron 
wavefunctions can overlap and tunneling 
current flows
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Quantum Tunneling: wavefunctions

• Electron wavefunction is propagating in metal, but exponentially decaying in the vacuum barrier.

• Typical decay coefficient: = 11 nm-1

• The transmission coefficient is:  

α =
2mV0


=
2mΦ

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2

22
4 F-- µ÷

ø
ö

ç
è
æ

+
= mdd ee
k
kT a

a
a



• When we apply a potential V between the metals, current will flow across the barrier.

• The current from the left metal to the right is given by ( f = Fermi distribution):

• The current from the right metal to the left is given by:

• The net current is the difference:

• If the voltage is small relative to the barrier, we can use a 1st order expansion for the 

Fermi distribution function and get: , with:

• The I-V curve is linear, as in an Ohmic contact

• Wavefunction decay length is very short: ~ 0.1 nm! 

• This makes the current very sensitive to the distance: a change of distance

of one atomic monolayer = 0.3 nm, gives change of current by x1000! 
17

Quantum Tunneling: current flow

Jl→r =
4πem2

h3
f (E)Dl (E)Dr (E + eV )T (E)dE

0

∞

∫

Jr→l =
4πem2

h3
f (E + eV )Dl (E)Dr (E + eV )T (E)dE

0

∞

∫

J = 4πem
2

h3
f (E)− f (E + eV )[ ]Dl (E)Dr (E + eV )T (E)dE

0

∞

∫

J =σ 0Ve
−2d 2mΦ / ∝Ve−2αd σ 0 =

e2 2mΦ
h2d

Dl (EF )Dr (EF )α =
2mΦ


F
=

m2
!

"
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Tunneling as surface probe:
• We approach the sample with a sharp metallic tip, 

biased to a small potential (1-1000 mV)

• At a very close distance, tunneling current will start to 
flow between the tip's atoms and the samples' surface 
atoms

• This current is measurable (nA) at a tip-sample 
distance of 1Å
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Tunneling between plane and tip
• Calculation of tunneling current between plane and half-spherical tip of identical 

metals, for tip radii of 1 and 10 nm: apparent width is much smaller!
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Tunneling between plane and tip
• In a more realistic case, the random atomic 

nature of the tip will “promote” one atom to 
produce most tunneling current. Here the tip 
R=10 nm, h=0.1 nm, lattice constant 0.56 nm

• The current through the lowest atom is bigger 
by 104 than the current from the next one!

• The real “tip” (atom) is not at the position X=0, 
but it doesn’t matter! It's only a small fixed 
shift in the image
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Tunneling between non-identical materials

• The tunneling current is given by: 

• In tunneling between different materials, the electron transmission probability depends 
on the electron density of states (DOS) at the Fermi level D(EF). This gives tunneling 
current:

• There is still exponential dependence on tip-sample distance

• The DOS of the sample can be measured

J =∝VD(EF )e
−2αd

J = 4πem
2

h3
f (E)− f (E + eV )[ ]Dl (E)Dr (E + eV )T (E)dE

0

∞

∫



• Tunneling between the metallic STM tip and a metal shows a 
gapless (Ohmic) I/V curve

• Tunneling between the metallic STM tip and a semiconductor 
shows the energy gap in the I/V curve (diode-like)

• Similar behavior in superconductors, where pair tunneling can 
be measured

• In many cases the derivative dI/dV is plotted vs. V to show more 
clearly the DOS, states in the gap etc.

• Surface states (oxidation) can pin the Fermi level – UHV is 
needed

• These measurements are often done at low temperatures 
(reduce phonons) 22

STS: Scanning Tunneling Spectroscopy
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The main problem: How to get 
nm resolution?

Potential problems:

1. Tip size

2. High-resolution XY scanning

3. Non-destructive

4. Keep distance from sample

5. Vibrations

6. Thermal stability

Solutions:

1. Short-range interactions

2. Piezo scanner

3. Non-contact

4. Height feedback

5. Rigid structure, isolation

6. Compensation
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High resolution: the piezo scanner
• The X-Y-Z relative movement between tip and sample  is controlled by a 

Piezoelectric Scanner with < 0.1nm precision

• During the scan, we need to measure and stabilize tip height:
– Measured through tunneling current (very sensitive!)

– Can be used to control tip height by a feedback loop

– Height is displayed as a 3D image



Natural Under field poled
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The piezoelectric effect
What is the piezoelectric effect?

• Change in length induced by electric field (also the reverse)

• Atomic structure of PZT: cubic crystal becomes tetragonal at low 
temperatures, producing a dipole (Ti+/Zr+ ion is above the O-2 ions) .

• Dipoles in domains can be ordered by an external field, applied during 
cooling (poling)

Source: http://www.physikinstrumente.com

T > Tc

T < Tc

P

PbZr0.52Ti0.48O3
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The piezo scanner
The displacement of the piezo element: i,j=1,2,3 

The most interesting directions:

• i=j=3 (z), used in linear motion

• i=1, j=3, used in flexing motion

Typical values: d33 =  5.10-10 m/V (Small!)

d13 = -2.10-10 m/V

Ways to extend the motion:

• Levering system

• Multi-layer stack, same voltage applied

to many piezo elements in series

• Can reach 100µm movement with a voltage of 100-1000V

Source: http://piezo.com

ΔLi
Li

= dijEi
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Types of piezo scanners: Tube
• All movements (X-Y-Z) can be achieved by a 

single tube scanner:
– Applying opposite voltages to pairs of electrodes bends 

the tube in one direction (X,Y)

– Applying voltage to the inner electrode makes the tube 
contract/expand (Z)

• Advantages of tube scanner:
– Simple, small, rigid, cheap (single part does all)

• Disadvantages of tube scanner:
– Non-linear (especially XY)

– Difficult to add position sensors

– All scan axes linked
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Types of piezo scanners: XY/Z
• Cartesian movement is often achieved by 

using separate Z and XY scanners

• High-quality XY scanners are available, 
with high-resolution position sensors to 
achieve linear scan

• Z piezo (used for the feedback!) is 
uncoupled from the XY scan
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Problems of piezo scanners
• Creep: The displacement of the piezo element 

continues slowly after a (large) step:

• Hysteresis: The displacement does not follow the 
same curve when moving back and forth

• Non-linearity: The displacement is non-linear with 
applied voltage

Source: http://www.physikinstrumente.com

g=1-2%ΔL(t) = ΔL(t0 ) 1+γ ln t / t0( )"# $%



1

Improving the piezo scanner
The piezo does not give precise positioning. We need 
sensors to get precise position readout / correction

Types of sensors:

• Strain Capacitive

Source: http://www.physikinstrumente.com

Capacitive sensor

Strain sensor

The limiting factor: noise (also in driver)!
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The use of feedback :
• In STM, current varies exponentially with tip-sample distance

• A log amp gives signal inversely proportional to distance

• The signal is fed back to a Piezoelectric actuator, to keep the same current = same 
distance

• The piezo tracks the surface of the sample, giving a high-resolution height map
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Two ways to scan:
• Constant tip height: Imaging 

the different surface atoms 
(due to their different work 
functions), revealing the 
surface composition or 
defects.

• Constant current: Imaging the 
surface topography at atomic 
resolution if the surface is 
composed of the same
atoms.
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The main problem: How to get 
nm resolution?

Potential problems:

1. Tip size

2. High-resolution XY scanning

3. Non-destructive

4. Keep distance from sample

5. Vibrations

6. Thermal stability

Solutions:

1. Short-range interactions

2. Piezo scanner

3. Non-contact

4. Height feedback

5. Rigid structure, isolation

6. Compensation
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STM construction
• On top of the scanner and tip, we need:

• Mechanical stabilization (vibrations!)

• Environment control (vacuum)

• Sample positioning

Basic STM 
structure

UHV STM
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Vibrations
• Sources of vibrations:

– Ground vibrations

– Directly coupled vibrations (acoustic)

• Model of vibration isolation: mass, spring, damper

• Resonant system with characteristic frequency w and 
quality factor Q

Source: TMC corp., http://www.techmfg.com
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Vibrations
• Performance of a real passive table:

– No damping (even amplification…) below 2-3 Hz

– Performance increases with frequency T ~ w-2

– Secondary resonances at 3.2, 30, 53, 70 Hz

Source: TMC corp., http://www.techmfg.com
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Vibrations
• Active tables: feedback system

– Motion sensor

– Piezo or motor to counteract external forces

• Combination: active+passive

Source: TMC corp., http://www.techmfg.com
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Vibrations• Active tables:
– Small size, light weight

– (almost) no amplification at low frequencies

Source: TMC corp., http://www.techmfg.com
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Vibrations: examples
• Passive isolation

– Floating table

– AFM mounted on granite slab 
with rubber feet (secondary 
passive isolation)
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Vibrations: examples
• Active isolation table inside passive metal enclosure

• Acoustic isolation (inside lining)
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Vibrations: STM examples
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Thermal stability
Example 1:
• AFM structure made of Al (thermal expansion 

coeff. 23.10-6 °C-1)

• Distance between sample and support: 5 cm

• Temperature change of 1°C

• By how much would the sample move?

Answer: by 1.06 µm !

Not very good for measuring atoms…

5 cm
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Thermal stability
Example 2:

• AFM head made of Fe (thermal expansion coeff. 12.10-6 °C-1)

• Distance between supporting screws: 3 cm

• Sample is offset by 1mm from center of support

• Temperature change of 1°C

• By how much would the sample move?

Answer: by 12 nm !

• We need to stabilize room temperature, but also:
– To use materials with small expansion coeff. (Invar)

– To construct the AFM in a self-compensating, symmetrical way
AFM base

3cm

Sample

1mm
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STM tips

Which STM tip is better ?

Pt/Ir wire, diameter 0.2 mm, cut with wire cutter W wire, diameter 0.2 mm, electro-
etched in KOH solution

Hint: remember this curve?
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STM tips
Answer: They give the same performance!

Cut STM tip
Etched STM tip

"Swiss" STM tip (Same, enlarged x108)

• Tip radius is not very important: rigidity is more important 
than tip radius!

• Exponential tunneling current dependence “selects” that 
only the very last atoms of the tip participate in the 
imaging



STM Image of Au surface (b: after annealing) 17

The first STM (1982)

Schematic structure of the STM
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STM Images
• STM images can resolve individual atoms, or parts of molecules, on surfaces –

preferably under vacuum

STM Image of pyrolitic
graphite atoms

STM Image of Graphite, and the 
carbon ring underlying (top)
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STM Images
• STM images can resolve individual atoms, or parts of molecules, on surfaces –

preferably under vacuum

STM Image of CO molecules 
on RuO2 crystal

STM Image of Si atoms
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The effect of temperature
• STM images are sensitive to thermal atomic distance fluctuations, so low-T STM is 

essential for atomic studies

Graphite atoms, 77K Graphite atoms, 295K

More STM Images later …
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Outline:
• Introduction: What is SPM, history

• STM

• AFM

• Image treatment

• Advanced SPM techniques

• Applications in semiconductor research 
and industry
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The main problem: How to get nm resolution?
Potential problems:

1. Tip size

2. High-resolution XY scanning

3. Non-destructive

4. Keep distance from sample

5. Vibrations

6. Thermal stability

Solutions:

1. Short-range interactions

2. Piezo scanner

3. Non-contact

4. Height feedback

5. Rigid structure, isolation

6. Compensation

Short-range interactions: 
• Van-der-Waals forces
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Back to our solutions:
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Atomic Force Microscope: AFM
• Developed by Gerd Binnig (1984)

• Uses the Van-der-Waals force between tip and sample as 
short-range interaction

• Especially the repulsion force is very sensitive to distance:

F~z-12 !
(almost as good as exponential) and short-range (<1 nm)

• But: Van-der-Waals force are small: order of nN

• We need a sensitive force sensor
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10 µm
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AFM: How do we measure small forces (nN)?
• Solution: use the flexibility of the tip-carrying cantilever

• Material: Si
– Tough, flexible E= 2.105 N/cm2

– Easy to structure by photo-lithography and chemical etching

• The force on the tip moves (flexes) the cantilever.
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How do we measure small forces (nN)?
• Deflection of a beam: δ = FL3/3EI

• For a typical cantilever (L=400 µm, b=20 µm, h=2 µm): 
δ = 0.2 µm/nN

• The angular deflection is:

• a = F/Lk , where k = 3EI/L3

• Typical value: 0.6 °/nN

• Next question:

How do we measure a small deflection?

Repulsion

100 µm

http://www.clag.org.uk/pics/beams/moment1.gif
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How do we measure small deflections?
• First solution (1986): By an STM!

• Use the stm tip to sense the z-position of the AFM tip on the 
cantilever (used as a spring)

• Complicated !

100 µm
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How do we measure small deflections (nm)? 
With light!

• Light beams have been used to measure small deflection, e.g. by Cavendish in his 
measurement of G (1798) and surface profilometer of Schmaltz (1929)

• The light beam serves as a long weightless lever
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How do we measure small deflections (nm)? 
With a laser!

• A laser beam is reflected from the cantilever to a 
position-sensitive photodetector

• The detector signal is proportional to the tip 
displacement, which is proportional to the force

• The tip is scanned over the sample (as in STM) 
to produce the image



29

Operation of contact AFM
• We saw that the deflection of the cantilever is: 

δ = FL3/3EI, typical 0.2 µm/nN

• The reflected laser beam moves by a distance:  
δLD = δL/LD = FL2/3EILD

• Typical value (LD~20 mm): δLD = 10 µm/nN

 

L

LD



• The laser beam movement (10 µm/nN) is easily detectable by 
a 4-quadrant photodetector:

• SUM signal is used for laser beam alignment on the cantilever

• Y signal is used to detect the cantilever movement (zeroed 
before contact)

• X signal used to detect lateral forces

• Typical values: Beam diameter 1 mm, Prefl=10µW, gives a 
SUM signal of 10V. Difference of 10 µm (1%, corresponding 
to a force of 1 nN) gives a difference signal of 0.1 V

30

Operation of contact AFM
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AFM feedback
• As in STM, feedback is used to keep the tip at a constant force from the sample, the 

height is plotted as image.

• On flat surfaces (to a few nm), constant height can be maintained, and the force is 
displayed

Solutions:

1. Short-term interactions

2. Piezo scanner

3. Non-contact

4. Height feedback

5. Rigid structure, isolation

6. Compensation
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Scanner types
• As in STM, there are two scanner types: tube and 

separate (XY-Z)

• The separate XY-Z scanner is more linear, and has no 
Z-distortion

• Linearization is provided by sensors
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The other side of the force …
• The Van-der-Waals force between tip and sample:

• When the tip approaches, the force is attractive, then strongly repulsive

• The attractive force:
• Makes the tip “jump” to touch the surface quickly

when approaching the sample surface.

• Makes the tip “stick” to the surface when retracting.

• Result: hysteresis in tip movement !
• This is most problematic in ambient air, as the 

sample and tip are covered by a thin (1 nm)

water layer.
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How to avoid contact sticking in  AFM ?
• Let’s get inspired by the study of friction:

• We know that dynamic friction is smaller than static friction

• Let’s try to make the AFM tip dynamic!

• In AFM: vibrate the tip to avoid sticking 

http://www.sciencecontrol.com/static-friction-vs-kinetic-friction.htmlhttp://www.ehow.com/how_7529403_calculate-kinetic-friction.html
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Non-contact AFM: no sticking!

• "Classical" contact-mode AFM is prone to tip 
sticking problems.

• To avoid the problems of tip sticking, non-contact
AFM modes are used:
– "Pure" non-contact: tip never touches the sample, 

oscillation amplitude is small.

– Intermittent contact, or tapping: large amplitude, at every 
oscillation cycle the tip touches the sample.
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Operation of non-contact AFM
• The cantilever is vibrated by a special piezo at its 

resonance frequency: .

where K = force constant, µ = cantilever mass, both 
per unit length.

• The laser beam reflected onto the position-sensitive 
detector vibrates at the resonance frequency

• The PSD signal has an AC component, showing 
the tip’s oscillatory motion.

• At resonance, the transducer needs to supply 
minimum energy to maintain oscillations.

µ/0 Kf = PZT

sample
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Resonances of the cantilever
• The cantilever can have several resonances:
• The resonance frequency of the ith mode of the cantilever 

is: , where E = Young's modulus, r = material

density, L = cantilever length, S = cantilever cross-section,
I = cantilever moment of inertia, li = numerical coefficient 
dependent on the mode number: l1 ~ 0.5, l2 ~ 3, etc.)

• Usually the first (highest-Q) resonance is used

S
EJ

L
f 2

i
i r

l
=

1st resonance 2nd resonance 3rd resonance

Scan over a large frequency range

Zoom on the main resonanceFirst three cantilever resonances



• What changes by tip-sample forces ?
• Changes in the vibrations’

– Frequency
– Phase
– Amplitude

• In NC-AFM, usually frequency is used for feedback. In IC-AFM, usually the amplitude
change is used

• Sometimes lock-in (phase) detection is used, e.g. to plot height + phase images

5

Feedback in non-contact AFM

PZT

sample

 
Amplitude and phase near a resonance
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Force, resolution in non-contact AFM
• NC and IC AFM use different force regimes:

– Contact AFM works with repulsive forces, at close distance (<0.5 nm)

– NC-AFM works with the attractive force, at a larger tip-sample distance (1-10 nm)

– IC_AFM works with the repulsive force, at smaller distance, like contact AFM 
(0.5-2 nm). However the force is applied only for a short time during the cycle

• Results:
– Contact AFM has the highest resolution (atomic, like STM), but uses high forces 

(1 nN - 1 µN) which can scratch the surface

– NC-AFM uses less force (1 pN - 1 nN), good for delicate surfaces (polymers), but 
has lower resolution

– IC-AFM uses higher force (0.1 - 100 nN), but for a short time in the cycle. good 
for all surfaces, has higher resolution
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Types of AFM cantilevers
• For contact mode, usually a long cantilever is used 

to increase sensitivity. Remember:  δ = FL3/3EI
– Typical values: K = 0.1-1 N/m, L = 250-400 µm

– Resonance frequency is low (50 kHz)

• For non-contact mode, usually a short cantilever is 
used to increase the resonance frequency: 
– Typical values: K=10 N/m, L = 100 µm

– f0 = 200-400 kHz

• Sometimes, two-beam cantilevers are used,
e.g. to measure lateral forces.

f = λ
L2

EJ
ρS



8

Standard AFM tips
• Most AFM tips are made from Si, by photolithography and directional etching.

• The tip is pyramidal in shape, with height ~20 µm and sidewall angles of ~20° to the 
normal

• The standard tip radius is on the order of 5-10 nm

• In some cases Si3N4 is used: has longer life but larger tip radius

Si tip: Side view Si tip: Front view Si3N4 tip: Oblique view
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Special AFM tips
• For metrology : "elephant foot" to measure sidewalls:

• Inclined tips to probe edges:

• Ultra-sharp tips, down to 1 nm

• Diamond tips for hardness testing and long life (low resolution!)

• Different coating on tips : conducting, magnetic etc.

• High aspect-ratio tips to 
probe trenches and holes
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AFM construction
Small-sample AFM, tube scanner:

100 µm tube 
scanner

Sample XY 
position

Laser, PD 
adjust

AFM XY 
position under 

microscope

Electronics 
cable

Head Z 
position

Cantilever

Laser adj. 
display
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AFM construction
Big-sample AFM, XY/Z linear scanners:

100 µm XY 
linear scanner

Laser adjust
PD adjust

sample XY 
position

Z 
motor+piezo

Camera

Microscope XY
Microscope 

objective

Cantilever
Sample

Active vibration-isolation table
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Outline:
• Introduction: What is SPM, history

• STM

• AFM

• Image treatment

• Advanced SPM techniques

• Applications in semiconductor research 
and industry
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Image processing
• SPM images are rarely perfect “as taken”

• “Basic” image processing:
– Removing sample tilt, scanner non-linearity, tip jumps, noise

• “Advanced” image processing:
– Filtering, deconvolution, finding & characterizing objects

• Measurements:
– Size, distance of features

– Line profiles & their characterization

– Roughness

• Calibration
– Scan (axes) calibration

– Tip characterization
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Basic Image Treatment
A newly-taken AFM image of a flat sample looks like this:

WHY ?



15

Basic Image Treatment: plane-fit
The sample is never horizontal! A 10mm sample mounted with one side higher than the 
other by 0.1mm, will give an image slope of 100nm over a 10 µm scan!

"Before" "After"

The plane-fit correction: An average 
plane is calculated by LSQ fit of the 
image to: ax+by+cZ=0

This plane is subtracted from 
the image, to “planarize” it:
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2nd order plane-fit

• The piezo scanner can have non-linearities
(especially tube scanners), leading to changes 
in Z values across the scanned plane

• In this case, a simple plane fit is not enough to 
correct the image, which is curved.

The 2nd-order (and sometimes even higher order) plane-fit 
correction subtracts from the image a LSQ-fitted curved plane
Caution: in some cases, high-order plane-fit correction can 
remove real image features (e.g. sample undulations)

After 1st order planefit After 2nd order planefit
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Effect of the tip size on the Image
• The AFM tip is never atomically sharp (standard R~10 

nm), especially if it's broken !

• The image is the result of a geometrical convolution of 
the tip and sample

• A blunt tip will not penetrate a deep trench – a triangular 
image will result, shallower than the real depth. The 
width is correct (at the top) !
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Effect of the tip size on the Image
• Example: Semi-circular tip, radius R, measures a molecule (or particle), radius r < R

• The apparent width is measures between the points where the tip touches the 
molecule from each side

• Geometrical calculation shows:

• Typical values: r = 1 nm, R=10 nm, giving w = 12 nm!

• The tip size will increase the apparent step width, but the height is correct!

R

r

w/2

h

RrrRrRw 4)()(2 22 =--+=
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Example of tip deonvolution
• A square object (a) is 

scanned with a similar-size 
rounded tip (b).

• The resulting image (c) 
combines features of both tip 
and sample

• The object can be partially 
restored by deconvolution (d)
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AFM calibration

• Special "calibration standards"
– Checkerboard pattern to calibrate XY scale, linearity:

SEM picture of sample AFM image

• It's time-consuming to calibrate 
every tip – useful only for critical 
applications (metrology)

SEM picture of sample reconstructed
tip shape

– Sharp “tips” to calibrate tip shape:
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Outline:
• Introduction: What is SPM, history

• STM

• AFM

• Image treatment

• Advanced SPM techniques

• Applications in semiconductor research 
and industry
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Advanced modes - SPM
• The AFM can measure small forces (< 1 nN), 

so any phenomenon that can be translated 
to force can thus be measured by the AFM

• The tip is very close to the sample, so it can 
be used to interact with the sample while 
scanning

• The general name : Scanning probe 
microscopy - SPM

• Friction : LF-AFM

• Electric field : EFM

• Voltage : KF-AFM

• Current : I-AFM, CAFM

• (Spreading) Resistance : SSRM

• Capacitance : SCM

• Magnetic field : MFM

• Temperature

• Magnetic field (Hall)

• Chemical interaction

• Optical excitation and detection 
: SNOM

• Lithography
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Faster AFM
• Usually, AFM is slow! >5 mim/image

• Speed limits of AFM:
– Cantilever resonance

– Electronic feedback speed

– Z piezo speed (resonance)

– XY scanner speed (resonance)

• To get higher speed, we need to improve all 
parameters:
– Short, wide cantilever: resonance 1.3 MHz in air

– Faster scanner: 2.5 mm/s

– High speed electronics

• Results: scan speed of 6-1200 Hz!

High resonance-frequency 
cantilever

High-speed scanner

http://www.bruker-axs.com/dimension_fastscan_atomic_force_microscope.html
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Faster AFM: example of use
• Sample: DNA on Mica in fluid

• Scan speed : 1 sec / image

• Result: “film” showing DNA movement

• Real-time video (10 Hz) is now possible

http://www.bruker-axs.com/dimension_fastscan_atomic_force_microscope.html
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Lateral Force AFM
• Lateral movements of the cantilever are measured by the 

photodetector:

• Useful to measure friction and material contrast on planar structures.
)()(
)()(
DBCA
DBCA

+++
+-+

Patterned alkanethiol on Au 
(topography and LFM) Si tip distinguishes hydrophilic and hydrophobic layers
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Force curves: contact mode
• In contact mode: Sweeping the tip up-down can show the force – distance curve, 

useful for analyzing mechanical properties (polymers, bio samples…)

• The van-der-Waals curve can not be fully traced due to tip jumps (hysteresis)
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Force curves: intermittent contact
• New fast AFM can 

measure force-distance 
curve during each 
oscillation cycle of the tip

• Good control of peak force, 
reconstruction of curve
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Electric Field – EFM:
know your force …

• When a voltage is applied between 
sample and tip, electric (Coulomb) 
forces are present

• Electric forces are long-range (1/r2): 
can be separated from the short-range 
Van der Waals force (1/r6) by 
scanning at a higher Z position
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Electric Field – EFM : DC
• Drawback of scanning at great distance : lower resolution

• A better solution :Taking differential image at 2 distances 
("lift mode")
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EFM : AC for high sensitivity
• In a parallel-plate geometry, the electric force is:

Fe = CV2/d ; C = tip-sample capacitance ,d = tip-
sample distance

• The tip-sample voltage is :

• The force is : 

• We can use the AC component at w by lock-in 
detection

úû
ù

êë
é w-w++= )t2cos(V

2
1)tsin(VV2V

2
1V

d
CF 2

acacdc
2
ac

2
dce

)tsin(VVV acdc w+=

Si transistors : Topography and EFM
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Voltage – Kelvin Force (KF)-AFM

• AC-EFM can be used to measure the 
voltage at the surface of the sample

• A feedback loop is used to keep the 
EFM signal constant by changing the 
sample bias

• The resulting signal is the surface 
potential at the sample

Topography

(10x10µm)

Surface 
potential 
V=-4V

Surface 
potential 
V=+4V



5

Current – I-AFM, CAFM

• Contact AFM with a metal-coated tip can be 
used to pass current between tip and sample

• For semiconductors and insulators a sensitive 
current preamplifier should be used

• Low currents (<1 pA) can be measured 

BaTiO3 film, 2x2 µm, 2 pA (topography and current)
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Spreading-resistance – SSRM

• I-AFM can be used to measure resistivity : 
supposing a circular tip-sample contact of radius 
r, the local resistivity is given by:

r = 4rV/I

• Local resistivity is linked to doping concentration, 
leakage

• In air, high forces (µN) are needed – diamond tips

InP transistor, 7x7 µm (topography and resistance)

Si DMOS transistor, 12x12 µm 
(topography and resistance)
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Capacitance – SCM
• An AC voltage applied between tip and 

sample leads to the flow of AC current 

• Using high frequency (~1 GHz), small 
capacitance (<1 aF) can be measured

• SCM can be useful for measuring 
doping in semiconductors

Si MOS transistor, 1.25x1.25 µm (topography and dC/dV)

Si DRAM cell (topography and dC/dV amplitude and phase)
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Magnetic Force - MFM

• AFM tip made from or coated with magnetic materials 
(Co, Ni)

• Magnetic forces are long-range: can be separated 
from Van der Waals force (1/r6) by:
– Scanning at greater distance – only magnetic forces remain

– Taking differential image at 2 distances ("lift mode")

– Looking at phase in non-contact mode
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Magnetic Force - MFM
• Uses of MFM:

– Characterization of magnetic materials and 
nanostructures, e.g. magnetic semiconductors

– Hard-disk testing

– Future magnetic storage

Co magnetic domains

Magnetic tracks
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Hall Effect
• A miniature Hall cross (0.1 µm) is 

evaporated on the AFM tip

• Local magnetic fields can be 
measured with sub-µm resolution

• Resolution is lower than MFM, 
but sensitivity is higher



11

Temperature – SThM
• To sense temperature at the AFM

tip, two methods are used:
– A thermocouple is evaporated on the 

cantilever, with the junction at the tip

– The (temperature-sensitive) resistance 
of the Si cantilever is monitored 

• Local defects in circuits can thus 
be found
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Chemically sensitive AFM
• The high force sensitivity of AFM can be 

used to measure chemical interactions

• The AFM tip is coated by a chemically 
active molecule

• This tip is then sensitive to molecules 
which interact with the tip's coating

• When the right molecule is sensed, 
chemical interaction causes a change in 
the force

PZT

sample

Phosphorescence at the chemically modified tip edge
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Scanning Near-field Optical 
Microscopy – SNOM

• Optical microscopy is normally limited in resolution by the diffraction
of light to about 0.5 µm :

• d=hole diameter in mask,
• z=distance mask-wafer,
• r=distance from center

• Close to a sub-wavelength aperture, the optical near field has the 
extent of the aperture, but it diverges quickly

• The AFM scanning technique can be used to scan a small aperture 
close to a surface, thus providing sub-wavelength resolution

• Several SNOM techniques exist, mostly using metal-coated optical 
fibers with a small aperture   (< 100 nm) at their end

( ) ( ) 22
10 / xxJ4I=rI λzπdr=x /
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Principle of operation
• A conical-end (drawn or etched) optical 

fiber is coated by a reflecting metal (Al)

• The conical end of the tip is exposed to let 
the light come out through a small hole

• The tip is scanned close (< 50 nm) to the sample, so that near-field light goes through and can be 
detected, giving high resolution
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Types of SNOM (1)
• The illumination is brought to the tip of a fiber, transmitted 

light is collected through the sample (Transmission)

• The illumination is brought through the AFM tip

• Fluorescence or photoluminescence is collected (PL)

• Light generated by the sample (e.g. laser) is collected
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Types of SNOM (2)
• Different optical schemes can be used: objective lens, prism (evanescent coupling), etc.



Structure of the SNOM



Some SNOM images
• Fluorescent 

molecules:

• V-shaped laser 
(cross-section)
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STM and AFM lithography
• The small forces between tip and sample 

can be used to move atoms and molecules

• At low temperatures, Ar or metal atoms can 
be adsorbed on an atomically flat metallic 
surface (Ag, Cu) and manipulated by STM

• Artificial structures can be constructed … 
vary slowly

• Note the quantum-mechanical interference !
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Examples of STM lithography
• From the labs of 

you-know-who…
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AFM lithography
• AFM can be used for nano-lithography in several ways:

– The AFM tip can scratch or indent soft surfaces, e.g. a PMMA layer on Si, which is then used as 
template for etching, deposition, etc.

– A voltage applied between tip and sample can oxidize a metallic (Ti) layer or the surface of a 
semiconductor (GaAs), forming isolated regions

– The AFM tip can directly move molecules, nanoparticles

0.5 µm
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Outline:
• Introduction: What is SPM, history

• STM

• AFM

• Image treatment

• Advanced SPM techniques

• Applications in semiconductor research 
and industry
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STM Applications
• STM is most useful in vacuum:

– Naturally forming oxide layer distorts surface states

– Water layer interferes with tunneling current

• Many MBE growth system have a UHV STM (sometimes low-T STM) 
coupled to the growth chamber

• STM can show growth morphology, electrical properties, doping on the 
atomic scale

Au (111) atoms (3x3 nm) Au (111) atoms (17x17 nm) Ag (111) atoms
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Some STM Images (1)

STM Images of molecules. Right – tip is modified 
to interact with specific part of moleculeBSCO HTSC 

superconductor at 4K

Co atoms (dark) on Au 
(111) surface Co atoms (dark) on Ag surface
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Some STM Images (2)

Stacked InGaAs quantum dots

Si atoms

Graphite atoms
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Some STM Images (3)

Fe atoms manipulated by STM

Note the quantum interference patterns !

The rat race …
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Detailed example of X-STM atomic imaging 

Sample structure:

• AlGaAs barriers at extremities (“garbage 
collection”) 

• Four “stacks”, each of five 0.5 ML InAs
layers in GaAs

• Different spacing between InAs layers in 
stack: 1.5-16 ML.

• Sample cleaved in UHV, STM of cross-
section (XSTM)

• InAs brighter than GaAs

Atomic structure and optical properties of 
InAs submonolayer depositions in GaAs, 
A. Lenz, et al.
J. Vac. Sci. Tech. B 29, 04D104 (2011)
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XSTM images of one stack 
• We can distinguish single atoms

• InAs atoms are brighter than GaAs:
• Higher topography due to strain release

• Electron state density higher

• The InAs atoms tend to “cluster” (fig.b) in height 
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XSTM images of one stack 
• We can quantify the In contents by measuring local lattice 

parameter between rows (averaged along the rows)

• Accuracy: ~1 pm!
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XSTM images of one stack 
• The same can be done on a stack with 

smaller distance between inAs layers, 
leading to denser clustering Av

er
ag
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g 
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n

1 ML=
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AFM Applications
• AFM is more used than STM:

– Easier to use and to obtain an image

– Can work at ambient air

• Uses of AFM in characterization:
– Substrate characterization before growth (especially non-planar 

substrates)

– Growth surface characterization (morphology)

– Cross-sectional imaging (layer structure)

– Advanced electrical modes (doping)
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AFM atomic resolution Images
• AFM is also capable to produce atomic resolution images :

Sub-atomic resolution 
by AFM

Graphite

GaAs cross-section

Silicon
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Substrate characterization
• Example: etched V-groove substrate

• The quality of surfaces is easily determined by AFM
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Surface characterization
• Example: monolayer steps on GaAs structures

• The substrate misorientation angle determines the growth 
mode:  step-flow, step-bunching,     multi-step bunching

 

Exact 0.3°B 0.6°B 

5µm 
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Surface characterization
• Example: monolayer steps and dislocations on GaN layers

Images of GaN layer on Sapphire by AFM
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Cross-sectional characterization
• Oxidation rate in air of GaAs/AlxGa1-xAs, 

depends on Al contents x. 

• After 1 hr the oxide reaches finite thickness, 
depending only on composition

• GaAs is darker than AlAs

• InAs and InP oxidize even less than GaAs

AFM image of multi-layer AlGaAs sample
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Cross-sectional imaging of QWRs
• High-resolution AFM can show small (a few 

nm) nanostructures like GaAs/AlGaAs QWRs

• Resolution is almost as in TEM, with short 
sample preparation

InGaAs grwoth in GaAs

GaAs/AlGaAs QWRs
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Industrial applications
• Metrology : assessment of CDs, calibration

– Tip characterization is very important

• Measurement of doping concentration

• Detection of defects in structures
– Structural defects

– Electrical defects

• The main problem with AFM in industry : Speed !
– Typical AFM scan : 1-5 min/image, max. size 100 µm

– To scan a 4" wafer will take 1000 hrs !

– New high-speed AFM is better (0.1-1s/image)

– Only surface sampling can be used on production wafers, and no 
cross-sections!
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Summary
• The field of SPM has developed in 20 years into a multitude of surface 

characterization techniques

• AFM and its derivatives are simple and useful for characterization of semiconductors

• Cross-sectional imaging can reveal the insides of structures

• Industrial applications are growing, limited by AFM speed
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… and may the 
atomic force 
be with you !
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