
Computer simulation of physical systems I

Task VI: Monte-Carlo simulation of Lennard-Jones liquid

In this task, we will study the Lennard-Jones liquid, as in Task II, but this time using the
Monte-Carlo (Metropolis) method. The code uses again LJ units; for reminder, see the
additional notes at the end of Task II.

The parameters for the programs and other detailed instructions

Please go through the provided python scripts trying to understand what are the meaning of
each parameter in the scripts. The parameters are specified in the begining of the python
scripts.

Usages of mc sc.py and mc argon.py
--------------
parameters :
eps, sig - LJ potential parameters
mass - Mass of particles in LJ units
nequil - Number of equilibration cycles
lmax - Number of production cycle
nsamp - Steps between property sampling
dmax - maximal displacement
ndispl - Number of displacement attempts per cycle
npart - Number of particles
temp - Temperature
rho - Particle density (not mass density)
nbins - number of points to sample g(r)

In addition to the standard output, the program mc sc.py also creates two other output files:
energy - The energy property sampled during the run
pressure - The pressure property sampled during the run

Usage of blocking.py
--------------
parameters :
fn - file name of data file to be read
ntrans - number of steps of block averaging

The program is run by giving the name of the data-file in the script. In our case, one needs
to run blocking averaging for two properties: the energy and the pressure. The output then
includes the estimates for the standard deviation and an estimate for its error, first for energy
and then for pressure, when the size of the block is varied (as 2n) (the blocking transfor-
mation of Flyvbjerg and Petersen) The first line gives the standard deviation without block
averaging.



1. We will simulate a system of 200 particles. Let us choose temperature T = 2.0 and den-
sity ρ = 0.5. You can run a simulation by executing the script as ./mc sc.py >out. The
output is written to the file ”out”. Examine the output of the Monte-Carlo simulation pro-
gram. Find out how many cycles (also how many displacement attempts and how many
displacements) are needed to obtain convergence in both the energy and the pressure; and
plot them. Observe how the step length is adjusted during the run in order to attain the
(most efficient) acceptance rate of about 50%.

Calculate the T = 2 isotherm (pressure vs. density) of the LJ liquid for particle densities
ranging from 0.1 to 0.9. Set a sufficient number of equilibration steps to the input file.
Run the code for different values of density ρ and plot the results. Compare to Figure 3.5a
in Frenkel-Smit.

You can also try to reproduce the T = 0.9 isotherm of Fig 3.5b. Is there something wrong
with our simulated results?

2. Study of correlation. Block averaging can be used to obtain a more reliable error estimate
when the sampling is correlated, like in the case of Metropolis sampling.

Continuing with the system of 200 particles, T = 2.0 and ρ = 0.5 (Remember to do
the equilibration), plot the evolution of the block-averaging errors of energy and pressure
as the block size increases. Execute the script as ./blocking.py. Increase the number of
cycles until a formation of a plateau can be observed. In this case the blocks becomes
larger than the correlation length. Compare the magnitude of errors when calculated with
and without block averaging. Naturally, if you increase the number of steps between sam-
plings, you should find out that the samples are less correlated. Compare the correlation
length to the number of equilibration steps.

3. Calculation of g(r) and S(k) for argon.

That is, we have a system of 864 argon atoms, for which we fix σ = 3.4 Å and ε/kB = 120
K. Perform the simulation temperature in T = 94 K (0.7833 in LJ units) and density of
ρ = 1.374 g·cm−3 (0.8072 particle density in LJ units). Mass of argon atom is about



6.69 · 10−26 kg. Find out how to obtain the temperature and particle density in the used
LJ units by yourself. Execute the script as ./mc argon.py >out2 and two data files will
be generated: gr.dat and sk.dat.

You should set the number of steps between the sampling of g(r) to something similar
to the correlation length as obtained from the block averaging. You should also set the
sampling frequency nstep to something bigger than 1, because calculating these functions
can take quite a lot of time. A good choice could be a value close to the ”correlation
length” as obtained from the block size in Step2. Actually, after the equilibration, g(r)
does not change much i.e., you don’t need many time-steps. Remember, that you could
start from a configuration that you know is already equilibrated. The plots of the average
of the sampled g(r) and S(k) are presented in gofr.pdf and sofk.pdf . You can generate
your own plots. Compare them to that obtained in Task II and in Rahman’s paper.


