
APPENDIX G

In our work on the generation of pseudorandom numbers in Appendix F we consid-
ered two of the tests of the quality of these numbers, and we encountered possible
deviations from theoretical expectations based on the assumption of complete ran-
domness. Similarlg in our examples involving the transformation and rejection
methods for nonuniform pseudorandom numbers, we noted the statistical fluctu-
ations associated with finite sequences of random numbers. One encounters such
fluctuations often in dealing with stochastic processes, including any physical mea-
surements (and not just with random number generators), so it is important to
consider them in a little more detail. For example, how can we tell if these fluctu-
ations are too large or too small? That is, how do we know that they are just the
expected statistical fl uctuations?

This questionl is a central issue in statistics and is discussed at great length
in many textbooks (see, for example, Press et al. [1986]). The stand,ard statistical
test for determining if an observed distribution is consistent with a model (that is,
theoretical) distribution is based on what is known as the ch,i-square statistic. This
is defined by first separating the observed values into suitable bins, and then com-
paring the number of times the measured value falls into each bin to the statistical
expectations. A quantity called a2 is defined by
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Here ÀL is the number of events that are measured to fall into bin ri, and n16"u1 is the
number of events that the theoretical model pred,'icts should fall into each bin.2 The
quantity 12 is thus a quantitative measure of how much the observed distribution
differs from the theoretical one. We should not expect this difference to be zero,
since our intuition tells us that there will always be some fluctuations for such a
stochastic problem. on the other hand, if the fluctuations are extremely large, we
should be suspicious!

It turns out that statisticians have calculated the probability of finding a
particular value of X2, assuming that the process involves a large number of inde-
pendent random variables. The resulting probability distribution is a generalized
form of the so-called normal distribution. Here the term normal refers to an under-
lying Gaussian process which generally arises in connection with random processes'

In order to sketch the connection between o:Ulr y2 and the normal distribution' we

lNote that the present issue of quantifying how consistent the measured data are with.a
theoretical hypothesis is rather difierent from fitting the data to a theoretical formula to estimate
best numerical values for the unknown parameters in the formula.

2These theoretical values could vary from bin to bin, but we will ignore that (largety
complication here.
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will now digress with a bit of mathematics; if you are not interested in how the
connection comes about, you may wish to skip the following section and go direc't1y
to Section G.2. .

G.l CENTRAL LtMtT THEOREM AND THE 12 DtStnteUTtON
A normal distribution arises in virtually all processes in which a large number of
independent random values are involved. This distribution has a probability density
of the form

f (*) : |"-'"_ tù'/2o', (G'2)
v z1fo

where f (n)dr is the probability that r lies between r and r i d,n. It is not difficult
to see that p is the mean (r), while o2 is the variance or the squared fluctuation.
Thus, a : ((" - ("))'lt/'is the standard deviation.

The fundamental mathematical result we need is the central limit theorern.
We referred to this theorem briefly in Chapter 7 in connection with random pro-
cesses in general. Simply put, the theorem states the following: if we have in-
'dependent, identically distributed random variables Ai U : 7,2,3,...,1/) with a
finite mean p,6 and variance ofr, then the distribution of its sum "ll/] 

: Lf:rUi
approaches a normal distribution for large ly', with mean É, : l//-ro and vaiiance
o2 : No|. Mathematically curious readers can read about the rigorous statement
of this theorem as well as its proof in many statistics texts (such as Feller [1968]).
Here we accept this "simple" statement without proof. The central limit theorem
explains why a normal distribution is found in virtually all processes made up from
a large number of constituent random processes that are independent of each other.
This applies, e.g., to the random walks, molecules in a gas, and the collection of a
large number of random numbers generated by a computer.

The normal distribution (G.2) is for a scalar variable x), i.e., in one dimension.
We can generalize it to d dimensions, where the random variable i: (*r,rz,...,ra)
has d independent components nt,...tnd..Taking ("1 : (0,0,...) for simplicity, the
d-dimensional normal distribution would be

, ,o r ^-r'/2o'Id\r) : O;"ry-tr 
e-r' /zo , (G.3)

where ob i, th" variance of pach component. It is then not difficult to imagine
an extension of the central limit theorem where (G.3) is the limiting probability
density (in the d-dimensional space) for r-{-n/] when it is the sum of a large number
l/ of independent d-dimensional random vectors A'i U : 7,2, ..., N):

rfr/l : Dg, (c.4)
j:L

If we are interested in the probability density for the squared modulus r[lr/]2 instead
of that for r]l/], we need to integrate f a(fl over all the angles in d-dimensions. This
leads to

r, 2t | (r'\d/2-l 
-,2,fa?z): æ#AnlZ) ,-r'r2o2, (c.b)
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12 Probability Distribution

x2

FIGURE G.1: The probability density of the X2 distribution is illustrated above. The shaded area
corresponds to the cumulative probability that y2 falls somewhere between 0 and p. Sometimes you
will find tables of values corresponding to its complement, i.e., the unshaded area which is equai to
the probability that y2 is larger than p.
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for the j-th measurement a vector random variable i3 of d,-conponents so thât
its i-th component is 1 if the measurement falls in bin z and 0 otherwise. Siilce
these components obey the constraint that their sum is equal to 1 (because any
measurement produces a number in the range of all6wed values), the sum of many
such variables, which constitutes many independent measurements, generally falls
within the purview of the (d - 1)-dimensional normal distribution. To be specific,
we further define another vector random variable 91 whose i-th component is given
by

,-? \ (ii)u_ (ei)o)@i)t=ffi' (G'8)

Then the mean of each component of ùi is zero (((û)r) : 0) and its variance is

1/l/. Thus, the premise of the y2 distribution of d - 7 degrees of freedom appliesa

and the quantity X2 : lDf:rûil'is distributed according to the x2 distribution
(G.6) with u : d, - 1. Moreover, we can rewrite 12 as
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x2 : 1l;ru;),1tr li:r l

in the space of 12 Ç [0, oo) where f (r) is the gamma function. If o2 : l, and d,: u,
u7e can rewrite this distribution in the form of

r,(x\ : #D(+)"''-' s-x2/2, (G.6)

where 12 stands fot 12 in (G.5). This is the probability density of the / distri-
bution of z degrees of freedom. The y2 distribution is often quoted in terms of
its cumulative vaiues Ë- f,@)a*, orits complement [i f,@)a". By a change of
variables, the former Ëà" b" expressed as

rx2 I 1x'/z
J, f,(u)d,u : û6 J" "-uuu/2-1 

du : p(ul2,x'12), (c.7)

dt
i:!

( Dl=. {zi)u- tË, G),))'
Df:'\tz)u)

(G.e)

Finally, we can identify Dl:r{Z)n to be the random variable which counts how

many of the l[ measurements fall in bin z and Dl:rt{Z)n) as its theoretical expec-

tation. This completes our "physicist's" derivation of how the quantity X2 defined
in (G.1) obeys the x2 distribution (G.6) with u : d, - I.

G.2 / rESr OF A HYPOTHESIS

As seen in the previous section, the value of y2 for a set of independent measure-

ments divided into z * 1 bins wilt be distributed according to the y2 distribution of
z degre.es of freedom, f "(x'), given in (G.6) and sketched in Figure G.1. Often this
probability is expressed and tabulated in terms of the cumulative value between 0

and some limit B

where P(a, r) is known as the incomplete gamma function.
If not all the d components of the individual random vectors g;1 are indepen-

dent but there is an overall cônstraint among their components com"monto allfii,
the appropriate limiting distribution is (G.6)'with u: d,- 1 degrees of freedom.s
This gives the general connection between independent random processes and the

12 distribution. In fact, the X2 distributiot of u degrees of freedom is nothing but
the normal distribution in u * 1 dimensions with an overall constraint.

Now that we understand the character of the so-called 12 distribution, leÛ

us consider how it relates to hypothesis testing as mentioned at the
of this appendix. We assume that each independent measurement of
produces a number in some range. We divide this range into d bins

3If there are additional constraints, the number of degrees of freeclom must be further

(G.10)

This corresponds to the probability that the observed X2 < P. There is unfortu-
nately no convenient closed-form analytic expression for the function P(a,r). Tlne
behavior of P(a,r) for several values of a is shown in Figure G.2. This probabil-
ity function involves two parameters; one of them is proportional to the maximum

4If the expectation values have to be replaced by their estimates calculated from the sample

measurements themselves, then the number of degrees of freedom is reduced further. If r pa-

rameters must be estimated from the measurements to obtain the expectation values, then the
appropriate number of degrees of freedom will be d - L - r.

I,U
P(u 12, A 12) : r"(x\ d,(x2)

a
and
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value of a2 (* : g12), while the other is related to the number of degrees of freedom
in the problem, u (a: 

"12).A typical use of the x2-distribution is in testing of the validity of a hypothesis.
we predetermine a significance level a (0.0b or 5% is typical), and ask whether a
given set of measurements reject the hypothesis at this level or not. To do this, we
first look for the c,it'ical ualues of 12 such that the probabilities of y2 to fall below
the lower critical value or above the upper critical value are 

"uct 
afz. That is, the

lower critical value is the value of p where the cumulative probabili ty p(u 
12, 012) :af2, and Lhe upper critical value is the value of B where p(ul2,"BtZi:1_ al2If the actual value of y2 palculated from the measurements.and the theoretically

expected values falls outside these two limits,s then we must reject the hypothesis
at the level of a. Thus, if x2 were very large or very sinall, we reject thà original
hypothesis at a small significance level a. of course, even if the hypothesis i"ere
true, there would still be some probability a that the measured x2 would fall outside
the critical values. so a can be considered a factor of risk thai you are taking by
rejecting the hypothesis. For example, for a :0.05 with 10 degrees of freed"om,
the lower critical vahre is about 3.247 and the upper'critical value is about 20.4g
according to common tables.6 So, if your 11-bin test gives a value of X2 t"s, ttan
3.247 or greater than 20.48, you will reject the hypothesis which led tà this value
of y2 at the level of a :0.05, taking a b% chancàtf ie;ecting a correct theory, orwith 95% confidence. If your actual value of x2 is much furthàr outside of the"O.OS
critical values, you could push o to smailer values ànd reject the theory with even
greater confidence.

The bi'n lesf described here is equivalent to the test of the variance often
discussed in statistics texts. For such a test, y2 is usually defined as

X2 : u(s/oo)2, (G.11)

where s is the standard deviation measured from u * 1 samples and os is the
theoretically expected standard deviation (for the entire population). Here we test
the hypothesis that the standard deviation is indeed u. ih" theory predicts by
comparing this y2 with the critical values determined similarly as before.

In Appendix F we tested random numbers created by the Tïue Basic function
rnd by counting how many random numbers fall in bins or *iatn 0.1. we can now
test the hypothesis that these random numbers are uniformly distributed by using
the y2 test just described. suppose that a sample of N : i000 random numbers
distributed in 10 bins results ii a y2 of 11. This value falls just below the upper
critical value for the significance level of a:0.5. Thus we reject the hypothesis at
this high level of risk, or in other words, we have very little confidence in rejecting
the hypothesis, based on this one sample. Actually, with larger sampies we will
obtain values of x2 which are even closer to the critical value for a : 1, making it
virtually impossible to reject the hypothesis.

An even more stringent test of the significance of a hypothesis is to actually
produce the entire measured distribution of y2 from many independent set of ex-
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sThis is the so-called equal-tails test. Other tests such as a one-sided one are also used.
bSuch as in Abramowitz and Stegun in the references.

FIGURE G.2: Left: incomplete gamma function, P(a,n). For The y2 test, u : y2f2 and a: v/2,
where z is the number of degrees of freedom. Right: distribution of y2 values found by performing
1000 bin tests, as in Figure F.l-. Here we used 11 bins so that u :10 (a : 5), and each sequence
contained 1100 numbers generated using rnd. This distribution was constructed in a manner similar
to that employed in Figure F.3.

periments and compare the resulting distribution with the 1z-distribution. Though
it is harder to come up with a quantitative measure of confidence, it would be a
better test since it is based on a whole set of y2 measurements. Returning to the
test of the rnd function, the graph on the right in Figure G.2 shows tlne d,i,stri,buti,on
of X2 values found by performing a bin test, such as that seen in Appendix F, many
times. Here we have used 11 bins, so the number of degrees of freedom is 10. We
see that the most likely value of y2 is near n : X2 12 - 4.5. Since z : 10 for this
case, the curve shown on the lefi for P(a,r), with a : ul2: 5, is appropriate.
This theoretical curve has a value of 0.5 for " 

: l3l2 - 4.5. Statistical theory
thus predicts that in half of our measurements, that is, for half of the bin tests, we
should find a value of y2 that is smaller than - 9. This theoretical prediction is
in rough agreement with the distribution of 12, which was actually measured, and
which is shown on the right in Figure G.2.

One last remark concerns the so-called y2 frtting, where fitting is performed
with a theoretical function f containing unknown parameters (see Appendix D). In
general, this is done by varying the parameter values to minimize

Az,,s: i,w+#w, (c.12)
i:r

where y(z) are the measurements and o(z) are the standard deviations of the g
values at r(i,). Then the values of y11t(i) with the best-fit parameters become the
theoretical predictions of the model. It is easy to see that the minimum value of
A;s is precisely the quantity y2 that we discussed in connection to the variance
test, in this case, of the best-fit model. Thus, all of our results concerning the
test of the validity of a theoretical model using a X2 distribution applies to fitting

5 10

a=20

v=10
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problems as well. It is important to note, however, that the appropriate number
of degrees of freedom for the / distribution is ly' - n where rz is the number of
parameters whose best values had to be obtained by minimizing A.rs in the flrst
place.

APPENDIX H

Solving Linear Systems
.p

EXERCISES

REFERENCES

G.1. Perform the y2 test of your random-number generator, and compare the results
with that for TTue Basic's rnd shown in the text. Is your generator better or
worse? How have you made the iudgment?
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Systems of simultaneous linear equations lie at the heart of many physical prob-
lems. The eigenvaiue problems we have encountered in our studies diffusion of on
fractals (Chapter 7), in quantum mechanics (Chapter 10), and in the physics of mu-
sic (Chapter 11) are obvious examples, and the relaxation approach to Laplace's
equation (Chapter 5) was also be cast in this form. In this Appendix we focus on
two types of linear problems and briefly discuss the main methods used to attack
them. For the most part, our discussions will be introductory and emphasize prin-
ciples rather than give detailed how-to's (although we will, as usual, provide ample
references at the end of this appendix). These computations can be quite resource
hungry if the size of the problem is large, and for this reason, techniques have been
developed to take advantage of almost any special features that may be present in
a particular problem.l We will not have space to discuss most such special tech-
niques, nor will we discuss the important issues connected with singular (or nearly
singular) problems.2

A common type of linear problem is one where we wish to solve for a column
vector x of ly' components for which

(H.1)

where A is an l/ x ly' matrix and b is a non-zero column vector also with -A/ com-
ponents.3 Another common type of linear problem is the eigenvalue-eigenfunction
problem:

A'uz : )is, (H'2)

where the object is to find the eigenvalues Ài and associated eigenfunctions ui for
a square (N x l/) matrix A. If l/ linearly independent eigenvectors can be found,
then we can use them to construct the inverse matrix A-1 as well. Of course these
two prôblems are related, and some general matrix techniques are useful in both

lCommon "special" features include tridiagonal systems, which refers to the pattern of nonzero
elements in the associated matrix, and sparse systems, in which most of the elements of the matrix
ate zero. Sparse matrices often arise when a physical system has only local interactions,

2InamatrixformulationA.x:b,asingularproblemiswherethematrixAissingular,
or its determinant is zero and it projects a set of vectors x into the null vector (tr : O) when
acting on them. A common method for dealing with singular matrices is called s'ingular aalue
d,ecompositi,on.

3More general situations could arise where the matrix A is not square, i.e., it may have M
rows and ltr columns where M I l/, and x has -|y' components whereas b has M components.
This situation corresponds to the cases where the number of equations (M) is larger (M > ÀI) or
smailer (M < N) than the number of unknowns. Whether there will be a unique (or ang) solution
for x then depends on how many of the rows of A are lineariy independent of one another and
whether there are any rows that conflict. An example of the latter would be having two identical
rows (say, z and j) of A but with bi I bi.
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