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APPENDIX G

Statistical Tests of Hypotheses

In our work on the generation of pseudorandom numbers in Appendix F we consid-
ered two of the tests of the quality of these numbers, and we encountered possible
deviations from theoretical expectations based on the assumption of complete ran-
domness. Similarly, in our examples involving the transformation and rejection
methods for nonuniform pseudorandom numbers, we noted the statistical Aucty-
ations associated with finite sequences of random numbers. One encounters such
fluctuations often in dealing with stochastic processes, including any physical mea-
surements {and not just with random number generators), so it is important to
consider them in a little more detail. For example, how can we tell if these Aucty-
ations are too large or too small? That is, how do we know that they are just the
expected statistical fluctuations?

This question® is a central issue in statistics and is discussed at great length
in many textbooks (see, for example, Press et al. [1986]). The standard statistical
test for determining if an observed distribution is consistent with a model (that is,
theoretical) distribution is based on what is known as the chi-square statistic. This
is defined by first separating the observed values into suitable bins, and then com-
paring the number of times the measured value falls into each bin to the statistical
expectations. A quantity called x? is defined by

X2 — Z (IV; i nidcnl)2 ) (Gl)
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Here N; is the number of events that are measured to fall into bin %, and Niqea i8 the
number of events that the theoretical model predicts should fall into each bin.2 The
quantity x? is thus a quantitative measure of how much the observed distribution
differs from the theoretical one. We should not expect this difference to be zero,
since our intuition tells us that there will always be some fluctuations for such a
stochastic problem. On the other hand, if the fluctuations are extremely large, we
should be suspicious!

It turns out that statisticians have calculated the probability of finding a
particular value of X2, assuming that the process involves a large number of inde-
pendent random variables. The resulting probability distribution is a generalized
form of the so-called normal distribution. Here the term normal refers to an under-
lying Gaussian process which generally arises in connection with random processes.
In order to sketch the connection between our x? and the normal distribution, we

INote that the present issue of quantifying how consistent the measured data are vs{ith a
theoretical hypothesis is rather different from fitting the data to a theoretical formula to estimate
best numerical values for the unknown parameters in the formula.

2These theoretical values could vary from bin to bin, but we will ignore that
complication here.

(largely notational)
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will now digress with a bit of mathematics; if you are not interested in how the

connection comes about, you may wish to skip the following section and go direc’:ﬂy

to Section G.2. ’

¢

G.1 CENTRAL LIMIT THEOREM AND THE x? DISTRIBUTION

A normal distribution arises in virtually all processes in which a large number of
independent random values are involved. This distribution has a probability density
of the form |
_ _t —(z—w)?/207
f(z) Torg ; (G.2)
where f(z)dz is the probability that x lies between 2 and z + dz. It is not difficult
to see that p is the mean (x), while 02 is the variance or the squared fluctuation.
Thus, o = ((z — (z))2)'/? is the standard deviation.
The fundamental mathematical result we need is the central limit theorem.
We referred to this theorem briefly in Chapter 7 in connection with random pro-
cesses in general. Simply put, the theorem states the following: if we have in-

‘dependent, identically distributed random variables y; (j =1,2,3,...,N) with a

finite mean o and variance o§, then the distribution of its sum z[N] = Z;V:1 Yj

approaches a normal distribution for large N, with mean g = Ny and variance
0? = No}. Mathematically curious readers can read about the rigorous statement
of this theorem as well as its proof in many statistics texts (such as Feller [1968]).
Here we accept this “simple” statement without proof. The central limit theorem
explains why a normal distribution is found in virtually all processes made up from
a large number of constituent random processes that are independent of each other.
This applies, e.g., to the random walks, molecules in a gas, and the collection of a
large number of random numbers generated by a computer.

The normal distribution (G.2) is for a scalar variable z, i.e., in one dimension.
We can generalize it to d dimensions, where the random variable 7 = (z1, 22, ..., £4)
has d independent components 1, ..., zq. Taking () = (0,0, ...) for simplicity, the
d-dimensional normal distribution would be

]. 2 2
fa(r) = WB_T /2" (G.3)

where o2 is the variance of pach component. It is then not difficult to imagine
an extension of the central limit theorem where (G.3) is the limiting probability
density (in the d-dimensional space) for 7|N] when it is the sum of a large number

N of independent d-dimensional random vectors ¢; (j = 1,2,..., N):
N
AN = 05 (G.4)
j=1

If we are interested in the probability density for the squared modulus r[N]? instead
of that for #[IV], we need to integrate f4(7) over all the angles in d-dimensions. This

leads to
2 1 ’I"2 d/2-1 —7‘2/2 2
fd(T) = m (5> € > (G-5)
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x2 Probability Distribution

Probability Density

FIGURE G.1: The probability density of the x? distribution is illustrated above. The shaded area
corresponds to the cumulative probability that x? falls somewhere between 0 and B. Sometimes you
will find tables of values corresponding to its complement, i.e., the unshaded area which is equal to
the probability that x2 is larger than 8.

in the space of 7% € [0, co) where I'(z) is the gamima function. If 0 = 1, and d = v,
we can rewrite this distribution in the form of

. 1 2 v/2-1 T
LX) = m(g) e X /2, (G.6)

where x* stands for 72 in (G.5). This is the probability density of the x? distri-
bution of » degrees of freedom. The x? distribution is often quoted in terms of

2
its cumulative values [ f,(x)dz, or its complement fxof fu(z)dz. By a change of
variables, the former can be expressed as

/Xzf (u)du = _L_ v/2-1 g )
L Yo%) /0 e "y u = P(v/2,x°/2), (G.7)

where P(a, ) is known as the incomplete gamma function.

If not all the d components of the individual random vectors §j; are indepen-
dent but there is an overall constraint among their components common to all ¥j,
the appropriate limiting distribution is (G.6) with v = d — 1 degrees of freedom.’
This gives the general connection between independent random processes and the
x? distribution. In fact, the 2 distribution of v degrees of freedom is nothing but
the normal distribution in v + 1 dimensions with an overall constraint.

Now that we understand the character of the so-called x? distribution, let
us consider how it relates to hypothesis testing as mentioned at the ];@gimli_nb!'
of this appendix. We assume that each independent measurement of a (Illﬂ]"t.“y i
produces a number in some range. We divide this range into d bins and define:

3If there are additional constraints, the number of degrees of freedom must be further roduced:
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for the j-th measurement a vector random variable Z; of d-components so that
its 4-th component is 1 if the measurement falls in bin ¢ and O otherwise. Sikce
these components obey the constraint that their sum is equal to 1 (because any
measurement produces a number in the range of alldwed values), the sum of many
such variables, which constitutes many independent measurements, generally falls
within the purview of the (d — 1)-dimensional normal distribution. To be specific,
we further define another vector random variable §; whose i-th component is given

by

4 (75); — {(%5),)

“ N((@);
Then the mean of each component of g; is zero ({(i;);) = 0) and its variance is
1/N. Thus, the premise of the x? distribution of d — 1 degrees of freedom applies*
and the quantity x? = IE;VZI #;|? is distributed according to the x* distribution

(G.6) with v = d — 1. Moreover, we can rewrite x° as

><l\?

I
Mg
E
M

s
If
=

.
Il
=

(G.9)

f
M-
M ;

2 N
£

Finally, we can identify Zjvzl (Z;); to be the random variable which counts how

many of the N measurements fall in bin ¢ and Zjvzl ((Z),) as its theoretical expec-
tation. This completes our “physicist’s” derivation of how the quantity x* defined
in (G.1) obeys the x? distribution (G.6) with v =d — 1.

G.2 % TEST OF A HYPOTHESIS

As seen in the previous section, the value of x? for a set of independent measure-
ments divided into v+ 1 bins will be distributed according to the x?* distribution of
v degrees of freedom, f, (x?), given in (G.6) and sketched in Figure G.1. Often this
probability is expressed and tabulated in terms of the cumulative value between 0
and some limit 3

B
P(w/2,6/2) = /0 £03) dix?) (G.10)

This corresponds to the probability that the observed x? < 8. There is unfortu-
nately no convenient closed-form analytic expression for the function P(a,z). The
behavior of P(a,z) for several values of a is shown in Figure G.2. This probabil-
ity function involves two parameters; one of them is proportional to the maximum

41f the expectation values have to be replaced by their estimates calculated from the sample
measurements themselves, then the number of degrees of freedom is reduced further. If r pa-
rameters must be estimated from the measurements to obtain the expectation values, then the
appropriate number of degrees of freedom will be d — 1 — .
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value of x? (z = 3/2), while the other is related to the number of degrees of freedom
in the problem, v (a = v/2).

A typical use of the x2-distribution is in testing of the validity of a hypothesis.
We predetermine a significance level « (0.05 or 5% is typical), and ask whether a
given set of measurements reject the hypothesis at this level or not. To do this, we
first look for the critical values of x2 such that the probabilities of ¥2 to fall below
the lower critical value or above the upper critical value are each a/2. That is, the
lower critical value is the value of 8 where the cumulative probability P(v/2,3/2) =
@/2, and the upper critical value is the value of 8 where P(v/2,8/2) = 1 — a/2.
If the actual value of ¥? calculated from the measurements and the theoretically
expected values falls outside these two limits,” then we must reject the l‘iypal‘.]u-:si.s
at the level of a. Thus, if x* were very large or very small, we reject the original
hypothesis at a small significance level a. Of course, even if the hypothesis were
true, there would still be some probability « that the measured x*? would fall outside
the critical values. So « can be considered a factor of risk that you are taking by
rejecting the hypothesis. For example, for o = 0.05 with 10 degrees of freedom
the lower critical value is about 3.247 and the upper critical value is about 2[}.4};
according to common tables.® So, if your 11-bin test gives a value of X2 less than
3.247 or greater than 20.48, you will reject the hypothesis which led to this value
of x? at the level of o = 0.05, taking a 5% chance of rejecting a correct theory. or
with 95% confidence. If your actual value of x? is much further outside of the v{]‘.{]5
critical values, you could push & to smaller values and reject the theory with even
greater confidence.

The bin test described here is equivalent to the test of the variance often
discussed in statistics texts. For such a test, x? is usually defined as

X2 = v(s/ag)?, (G.11)

where s is the standard deviation measured from v + 1 samples and oy is the
theoretically expected standard deviation (for the entire population). Here we test
the hypothesis that the standard deviation is indeed as the theory predicts by
comparing this x? with the critical values determined similarly as before.

In Appendix F we tested random numbers created by the True Basic function
rnd by counting how many random numbers fall in bins of width 0.1. We can now
test the hypothesis that these random numbers are uniformly distributed by using
the x? test just described. Suppose that a sample of N = 1000 random numbers
distributed in 10 bins results in a x2 of 11. This value falls just below the upper
critical value for the significance level of & = 0.5. Thus we reject the hypothesis at
this high level of risk, or in other words, we have very little confidence in rejecting
the hypothesis, based on this one sample. Actually, with larger samples we will
obtain values of x? which are even closer to the critical value for o = 1, making it
virtually impossible to reject the hypothesis.

An even more stringent test of the significance of a hypothesis is to actually
produce the entire measured distribution of ¥? from many independent set of ex-

5This is the so-called equal-tails test. Other tests such as a one-sided one are also used.
SSuch as in Abramowitz and Stegun in the references.
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FIGURE G.2: Left: incomplete gamma function, P(a,z). For the x? test, z = x?/2 and a = v/2,
where v is the number of degrees of freedom. Right: distribution of x? values found by performing
1000 bin tests, as in Figure F.1. Here we used 11 bins so that ¥ = 10 (a = 5), and each sequence
contained 1100 numbers generated using rnd. This distribution was constructed in a manner similar

to that employed in Figure F.3.

periments and compare the resulting distribution with the y?-distribution. Though
it is harder to come up with a quantitative measure of confidence, it would be a
better test since it is based on a whole set of x? measurements. Returning to the
test of the rnd function, the graph on the right in Figure G.2 shows the distribution
of x? values found by performing a bin test, such as that seen in Appendix F, many
times. Here we have used 11 bins, so the number of degrees of freedom is 10. We
see that the most likely value of x? is near z = x2/2 ~ 4.5. Since v = 10 for this
case, the curve shown on the left for P(a,z), with a« = v/2 = 5, is appropriate.
This theoretical curve has a value of 0.5 for z = /2 ~ 4.5. Statistical theory
thus predicts that in half of our measurements, that is, for half of the bin tests, we
should find a value of x? that is smaller than ~ 9. This theoretical prediction is
in rough agreement with the distribution of x2, which was actually measured, and
which is shown on the right in Figure G.2.

Orie last remark concerns the so-called x? fitting, where fitting is performed
with a theoretical function ¢ containing unknown parameters (see Appendix D). In
general, this is done by varying the parameter values to minimize

N ; . 2
Bis = 3 i .12)

where y(i) are the measurements and o(¢) are the standard deviations of the y
values at z(i). Then the values of yy; (i) with the best-fit parameters become the
theoretical predictions of the model. It is easy to see that the minimum value of
Aps is precisely the quantity x? that we discussed in connection to the variance
test, in this case, of the best-fit model. Thus, all of our results concerning the
test of the validity of a theoretical model using a x? distribution applies to fitting
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problems as well. It is important to note, however, that the appropriate number
of degrees of freedom for the x? distribution is N — n where n is the number of
parameters whose best values had to be obtained by minimizing Apg in the first
place.

EXERCISES

G.1. Pt.erform the x? test of your random-number generator, and compare the results
with that for True Basic’s rnd shown in the text. Is your generator better or
worse? How have you made the judgment?
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APPENDIX H

Solving Linear Systems

Systems of simultaneous linear equations lie at the heart of many physical prob-
lems. The eigenvalue problems we have encountered in our studies diffusion of on
fractals (Chapter 7), in quantum mechanics (Chapter 10), and in the physics of mu-
sic (Chapter 11) are obvious examples, and the relaxation approach to Laplace’s
equation (Chapter 5) was also be cast in this form. In this Appendix we focus on
two types of linear problems and briefly discuss the main methods used to attack
them. For the most part, our discussions will be introductory and emphasize prin-
ciples rather than give detailed how-to’s (although we will, as usual, provide ample
references at the end of this appendix). These computations can be quite resource
hungry if the size of the problem is large, and for this reason, techniques have been
developed to take advantage of almost any special features that may be present in
a particular problem.! We will not have space to discuss most such special tech-
niques, nor will we discuss the important issues connected with singular (or nearly
singular) problems.?

A common type of linear problem is one where we wish to solve for a column
vector x of N components for which

A-x=b, (H.1)

where A is an N x N matrix and b is a non-zero column vector also with N com-
ponents.® Another common type of linear problem is the eigenvalue-eigenfunction
problem:

A u; = )\iui s (H2)

where the object is to find the eigenvalues \; and associated eigenfunctions u; for
a square (N X N) matrix A. If N linearly independent eigenvectors can be found,
then we can use them to construct the inverse matrix A~! as well. Of course these
two problems are related, and some general matrix techniques are useful in both

1Common “special” features include tridiagonal systems, which refers to the pattern of nonzero
elements in the associated matrix, and sparse systems, in which most of the elements of the matrix
are zero. Sparse matrices often arise when a physical system has only local interactions.

2In a matrix formulation A - x = b, a singular problem is where the matrix A is singular,
or its determinant is zero and it projects a set of vectors x into the null vector (b = 0) when
acting on them. A common method for dealing with singular matrices is called singular value
decomposition.

3More general situations could arise where the matrix A is not square, i.e., it may have M
rows and N columns where M # N, and x has N components whereas b has M components.
This situation corresponds to the cases where the number of equations (M) is larger (M > N) or
smaller (M < N) than the number of unknowns. Whether there will be a unique (or any) solution
for x then depends on how many of the rows of A are linearly independent of one another and
whether there are any rows that conflict. An example of the latter would be having two identical
rows (say, 7 and j) of A but with b; # b;.
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