Computer simulation of physical systems I

Task II: NVE molecular dynamics simulations

In this exercise, you are going to perform molecular dynamics (MD) simulations of a system
of atoms interacting through a Lennard-Jones pair potential in the NVE statistical ensemble.
To complete this exercise you should download the python version of the MD code available
on the website and closely follow the instructions provided in this guide.

All the functions necessary for performing MD simulations are implemented in MD. py,
which has to be imported in your python code, i.e. from MD import .

1. Startup: generate the starting atomic positions, the starting velocities, then change the
system temperature to the desired value and equilibrate the sample.

» Use the function crystal () to generate atomic positions on a FCC lattice; choose the
parameters to match the number of atoms (N = 864) and density (p = 1.374g - cm™?)
for liquid Ar as in Rahman’s paper! (see also additional notes).

* Perform a short run to compute the velocities and then use the constant velocity rescal-
ing to adjust the temperature to the value that you can find in Rahman’s paper (1" ~
94 K).

* Equilibrate the system with a run in free evolution mode (regular NVE dynamics);
monitor the conservation of energy and the fluctuations of other quantities.

* (Optional): check the conservation of energy as a function of the integration step At;
study the dependency of the fluctuations on the system size (i.e., as a function of ).

2. Sample static properties: sample the radial pair correlation function, g(7), and also the
structure factor, S(k), computed as the radial Fourier Transform (FT) of g(r). Compare
the position of the peaks with those reported in Rahman’s paper. Try to explain the be-
haviour of ¢(r) and its limits for » — 0 and r — 0.

3. Sample dynamical properties: estimate the diffusion coefficient, D, using two different
methods, namely

(a) Einstein’s relation, MSD(¢) = C' + 6Dt, which involves the sampling of the mean
square displacement (MSD) and a fitting procedure giving C' and D
(b) the time integral of the velocity autocorrelation function
4. (Optional) Repeat the same steps for a system at a different temperature and/or density

(remember that the accuracy of the time integration may depend on these parameters) and
compare the static and dynamic properties.

'A. Rahman, Phys. Rev. A 136, A405 (1964).



Task II: additional notes on MD units

The MD codes provided for this exercise (and the next one) solve numerically the equations
of motion for a Lennard-Jones (LJ) fluid made of /V particles contained in a 3D periodically
repeated rectangular box and interacting through the pair potential:

o= [(2)"- 2]

The codes use internally the so-called LJ units (i.e. o and ¢ are both set to 1), so that distances
are expressed in o units, while energies are given in € units. Therefore, once the parameters
of the the LJ potential have been fixed (for instance, 0 = 3.4 Aand e /kp = 120 K for Ar,
see Rahman’s paper) the units of measure for all physical quantities are also fixed, as listed
in the following table for those of our interest:

quantity LJ units
distance o
energy 3
velocity (e/M)V/?
temperature e/kp
time o(e/M)~1/?

where M is the mass of an atom in the simulation (for instance, M ~ 6.69 - 10726 kg for Ar).

As an example, we can use the relations above to convert the integration time step used in
Rahman’s paper (At = 10~!4s) from seconds to LJ units. Inverting the relation

At =o(e/M)"Y? . Au
to obtain Awu (in LJ units), we get the following value (expressing all parameters in SI units):

120-1.38 - 1072
6.69 - 1026

1/2
1
AU_At'(S/M)1/2/O'—1014'( ) WEOOOZLG,

which will be employed in our simulations in order to compare with Rahman’s results.



Instructions

* Download and unpack the archive Task?2 . zip. The MD code is implemented in MD . py
and the files Step« . py contain minimal scripts required to complete the step.

* if you managed to get the code working on your workstation, then you are ready to start:
change directory to Stepl_Startup and move to Step 1.

MD code

The MD code requires the following libraries:

* numpy for linear algebra (https://numpy.org)
* matplotlib for plotting (https://matplotlib.org)
* scipy for statistics analysis and fitting (https://scipy.org)

* numba for acceleration of the most heavy functions (http://numba.pinata.org). The use of
this library can be easily avoided if necessary, but be prepared to loose the performance. To
eliminate numba from the code, remove the line @ jit (parallel=True) InMD.py.

The main functions used for running MD simulation are run_NVE () and run_NVT ().
These functions return all the results in a dictionary, which contains energies, velocities,
g(r) etc. You should find all the possible output in the return statement of the corresponding
function.

Step 1: Startup
1. Running crystal ()

First of all, you must generate a configuration to start from. The function crystal () is
used to arrange atoms in a crystalline fcc structure.

The function crystral () takes two arguments: the number of units fcc cells along each
direction Ncel1s and the lattice spacing 1at_par.

The number of unit fcc cells (containing 4 atoms each) to stack along the three directions:
choose them in order to get a cubic box with same number of particles (N = 864) used in [1],
hence select 6 unit cells along each axis so that N will be equal to 4 x (6 X 6 x 6) = 864 (in
general you should not put less unit cells than what suggested to satisfy the minimum image
criterion, but 6 cells is more than enough in this example). This number of cells, combined
with the lattice parameter chosen above, gives a box size approximately equal to that in [1]
(L = 10.229 in L.J. units, please see the notes), so that the densities will be the same too.

The lattice spacing of the fcc crystal is the equilibrium lattice spacing of the LJ potential is
1.5496, but here we choose a value, a = 1.7048, that corresponds to the density studied by
Rahman [1], i.e. 1.374 g - cm ™~ for Ar (with atomic mass approx. M = 6.69 - 10~23g).


https://numpy.org
https://matplotlib.org
https://scipy.org
http://numba.pydata.org

The function crystal () returns two arrays: coordinates and velocities, the latter assigned
randomly according to Gaussian distribution.

The simplest example of using crystal () is provided in Stepl.py:

Ncells = 6 # Number of unit cells along each axis
lat_par = 1.7048 # Lattice parameter

L = lat_par*Ncells # Size of the simulation box

N = 4xNcells*xx3 # Number of atoms in the simulation box

# Generate fcc structure
pos, vel = crystal (Ncells, lat_par)

2. Running the MD code

In order to run the MD code, you need to call run_NVE () which takes six compulsory
arguments: coordinates, velocities, box size, # steps, # atoms, integration step.

For example, the simplest script could look like this:

Ncells = 6 # Number of unit cells along each axis
lat_par = 1.7048 # Lattice parameter

L = lat_par*Ncells # Size of the simulation box

N = 4xNcells*x*3 # Number of atoms in the simulation box
nsteps = 200 # Number of steps

dt = 0.003 # Integration step

# Generate fcc structure
pos, vel = crystal (Ncells, lat_par)

# Perform simulation and collect the output into a dictionary
output = run_NVE (pos, vel, L, nsteps, N, dt)

Files Step* .py contain a minimal setup needed to complete each step. In order to per-
form one step at a time make sure to comment the corresponding part of the code (steps are
separated by descriptive comments).

To run MD with output on the screen: python Stepl.py
To run MD with output on a file: python Stepl.py > testrun.out
To run MD with output on both file and screen: python Stepl.py | tee testrun.out

The first part of Stepl.py will perform a constant energy calculation (NVE ensemble)
with 200 steps (using a time step of 0.003), continuing from samplel0.dat previously
generated (or created by crystal), and writing on samplell.dat at the end.

On standard output (or inside test run . out) you will find some important quantities mon-
itored at each time step, such as kinetic and potential energies.

3. Compute velocities

In order to bring the sample close to the desired temperature (through constant velocity
rescaling), we first need to compute the velocities for the atomic configuration generated
with crystal. A small number of time steps (here, 200) is sufficient for this purpose.



The input file is stored as md_start.in:

nsteps = 200 # Number of steps
dt = 0.003 # Integration step

# Read crystal shape, positions and velocities from a file
N, L, pos, vel = read_pos_vel ('samplelO.dat’)

# Perform simulation and collect the output into a dictionary
output = run_NVE (pos, vel, L, nsteps, N, dt)

For this tutorial, we will adopt an integration time step corresponding approximately to that
used in [1] for liquid Ar (10~'* sec., see notes for the conversion to L.J. units). Among
other things, you will be asked to check how your results depend on the time step: the value
needed to ensure conservation of energy to a good extent depends on the temperature and on
the particle density.

4. Change T and equilibrate

Now we are ready to apply the constant velocity rescaling to our sample: at each time step
the velocities will be scaled in order to bring the instantaneous temperature of the system to
the desired value (7' = 94.4K, which corresponds to about 0.7867 in L.J. units for Ar).

The input is:

nsteps = 200
dt = 0.0046
T = 0.7867 # requested temperature

# Change T
output = run_NVE (output[’pos’], output[’vel’], L, nsteps, N, dt, T)

# Plot temperature vs step
plt.plot (output ['nsteps’],output [/ EnKin’ ]%2/3)
plt.show ()

T is an optional argument of the function run_NVE, which default value is None. When
T is greater than or equal to O, the code will run a run at constant temperature. Notice that
is NOT a constant energy dynamics, hence we are not sampling the NVE ensemble during
this run (nor the NVT ensemble, see Task3 for NVT molecular dynamics). Since we are
interested in the equilibrium properties (in the thermodynamics sense) of the system, no data
should be collected in this kind of run, however you can see how the temperature changes
during the run by plotting it against the step.

Before starting to collect data, we need to equilibrate the sample with a short run of regular
NVE dynamics.

The input will be as follows:

nsteps = 800
dt = 0.0046

# Equilibrate
output = run_NVE (output[’pos’], output[’vel’], L, nsteps, N, dt)

# Plot total energy vs step



plt.plot (output ['nsteps’ ], output [/ EnKin’ J+output [/ EnPot’ ])
plt.show ()

By plotting the total energy, as a function of time you can check that F;,; is actually con-
served (to a good approximation) in this kind of dynamics (and compare with what happens
to E,, in the constant velocity rescaling run). You can verify that the conservation of en-
ergy becomes more strict as the time step ’deltat’ is reduced. In general, the other quantities
display much larger fluctuations, instead. Notice that the average temperature might not be
equal or not even close to the target temperature, since in the NVE dynamics is not possible to
fix this variable (sometimes this makes also difficult to compare different MD simulations).

Step 2: Sample static properties
1. Compute g(r) and S(k) (through F.T.)

From the previously equilibrated atomic sample (which should be now stored in
sampleT94.4.dat) you can start a MD run in which you do a sampling of some physical
properties. We will first focus on some static properties, namely the radial pair correlation
function g(r) and the structure factor S(k). The latter can be obtained in two modes, either
directly by sampling the Fourier transform (FT) of the number density, or, in the case of an
isotropic system, as the FT of the pair correlation function (see notes and Allen-Tildesly, ch.
2.6). In this subtask you will proceed through the second way.

The code can be used to perform a MD run of 2000 steps and evaluate the g(r) at every step.
The quantity is then averaged over all these samplings.

The code for ¢g(r) and S(k) (through FT of g(r)) sampling is stored in Step2 . py:

nsteps = 2000
dt = 0.0046
N, L, pos, vel = read pos_vel ('sampleT94.4.dat’)

# Run MD simulation
output = run_NVE (pos, vel, L, nsteps, N, dt)

# Plot g(r)
plt.plot (output["gofr’ ] ['r’],output [’ gofr’]1["g’])
plt.show ()

# Plot S (k)
plt.plot (output ["sofk’ ] ["k’],output [’ sofk’”]J["s’])
plt.show ()

The default program uses the Fourier transformation method to compute the structural factor.
For the report, you are asked to compare S(k) computed by Fourier transformation and direct
sampling. The following code shows how to change the method to direct sampling:

nsteps = 2

dt = 0.0046

N, L, pos, vel = read pos_vel ('sampleT94.4.dat’)

# Run MD simulation

output = run_NVE (pos, vel, L, nsteps, N, dt,direct_sofk=True)

# Plot S (k)

plt.plot (output [’ sofk_direct’ ][’ gvec’],output[’sofk_direct’][’sofk’])



plt.show ()
# Write S (k) into a file

np.savetxt (' sofk-direct.dat’,np.column_stack ( (output [’ sofk_direct’] [’ gvec
14
],output [’ sofk_direct’][’sofk’])))

TO DO:

1. Measure position of the peaks (both in g(r) and in S(k)) and compare to those reported
by Rahman). Try to explain the other features you see.

2. Study the behaviour of these two quantities as a function of the equilibration temperature
and of the density. For the former, you need to go through the steps seen before in order
to bring the system close to the new temperature and equilibrate. For the latter you have
to generate a new sample with cyrstal ().

3. You may try a simulation with a larger number of atoms in order to extend the maximum
radius allowed for g(r), which is here limited to half of the box size (see next lectures for
other methods to extend this limit). Be aware that when the number of atoms gets larger
than a few thousands the code will become quite slow (due to the O(N?)) operations. In
order to overcome this you may have to use another version of the code which uses Verlet
neighbor lists (at least for the dynamical evolution part).

4. When dealing with short range interactions (such as the LJ pair potential), the potential
is approximated by truncating and setting it to a fixed value for interparticle distances
beyond a certain cutoff radius (called r_cutoff in the code). By changing r_cutoff
from its default value (2.5), you can check if and how this approximation affects the
structural properties.

Step 3: Sample dynamical properties
Compute MSD and VACF

Now we move to the study of a dynamical quantity which is easily accessible through MD
simulations: the diffusion coefficient. As you have learned during the class, this quantity
can be computed from the mean square displacement (MSD) of the atomic positions through
Einstein’s relation, or from the integral of the velocity autocorrelation function (VACF).

Important remarks

1. ensemble average needs either to average on different time origins in the same run (not
implemented) or to average (at same times) the quantity obtained as a function of time in
several different runs (of same length). Smaller systems (small N) are subject to larger
statistical fluctuations, therefore the deviation from the ensemble average may be quite
large if a single realization is used to estimate the diffusion coefficient.



2. since we are sampling a dynamical quantity, the accuracy in the description of the particle
trajectories plays more important role here. Be careful on the choice of dt; the value used
so far may not be sufficiently small.

Step3.py adopts the second method for computing the ensemble average of the dynamical
quantities, i.e. the MSD and VACF are calculated as an average over a number of simulations
defined by Nruns.



