
Course 14/2

§ General method

§ SHAKE algorithm 

Constraints in MD (2/2): general method and SHAKE algorithm



General method

Constraints

Evolution by position Verlet

Lagrange parameters

Verlet evolution without constraints

Exact enforcement of constraint

The Lagrange parameters gk are determined by exactly imposing the 

constraints at  t + Dt :
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Linearization

linear in Dt 2gk

higher order in Dt 2gk

Using the Verlet evolution

linear in Dt 2gk higher order in Dt 2gk

sk ( { ri ( t + Dt ) } )  = sk ( { riʹ ( t + Dt ) + [ ri ( t + Dt ) - riʹ ( t + Dt ) ] } ) 
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Linearized equation to be solved

Constraints to be imposed

Linearized equation

where

sk ( { ri ( t + Dt ) } )  =  0          k = 1, … M
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Solution by iteration

Equation to be solved

Solution of linear equation

matrix inversion: only once per time step
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Sequence: from  � to  �+1
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Starting point
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(⁎) Verlet evolution
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Convergence

§ Convergence is generally rapid.

§ Convergence can be controlled by reducing the MD time step.

lim
� → ∞

ri
( � ) ( t + Dt )  =  ri ( t + Dt )



Constraints in MD

General method

SHAKE algorithm

r ( t ) rʹ ( t + D ) r ( t + D )

§ Derivatives calculated in two points per timestep.
§ Higher orders are considered.
§ All constraints are treated concurrently.

r ( t ) r ( t + D )rʹ ( t + D )

§ Derivatives continuously recalculated as convergence proceeds.
§ Only linear order is retained.
§ One constraint at the time is treated.



SHAKE algorithm

Schematic flow chart of algorithm

3. Loop over successive refinements with iterations labeled by � = 1,…∞ .

4. Inner loop over constraints:   k = 1, … M .

Next k .  
Next � .  

5. End when constraints are satisfied.

1. Calculate                       , corresponding to the Verlet evolution without constraints.riʹ ( t + Dt )

2. Set                                          . ri
(0)( t+Dt ) = riʹ ( t+Dt )

Partial update of    ri
( ��)    for a given constraint k .  



Partial update of the coordinates at iteration step � and at constraint k 

Enforcement of constraint k 
linear term only
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where  ri ( t )  are the positions at the previous timestep t 
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Considerations about SHAKE algorithm

§ No matrix inversion is required. This contributes to the speed of the algorithm.

§ Derivatives are recalculated as convergence proceeds. The linear expansion
progressively becomes a better approximation as convergence approaches. 

§ Note the sum over particles i = 1 … N : The SHAKE algorithm 
is particularly convenient when each of the various constraints does not
depend on the positions of many different atoms. This makes the SHAKE

algorithm particularly useful for bond constraints (just two particles involved).
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