
Course 14/2

§ General method

§ SHAKE algorithm

Constraints in MD (2/2): general method and SHAKE algorithm

General method

Constraints

Evolution by position Verlet

Lagrange parameters

Verlet evolution without constraints

Exact enforcement of constraint

The Lagrange parameters gk are determined by exactly imposing the

constraints at t + Dt :

sk ({ ri (t) }) = 0 k = 1, … M

sk ({ ri (t + Dt) }) = 0 k = 1, … M

!skri (t + Dt) = 2 ri (t) – ri (t – Dt) + Fi –
Dt 2

mi

Dt 2

mi
" gk

k = 1

M

!ri {ri(t)}

riʹ (t + Dt)

Linearization

linear in Dt 2gk

higher order in Dt 2gk

Using the Verlet evolution

linear in Dt 2gk higher order in Dt 2gk

sk ({ ri (t + Dt) }) = sk ({ riʹ (t + Dt) + [ri (t + Dt) - riʹ (t + Dt)] })

!sk

!ri
= sk ({ riʹ (t + Dt) }) + [ri (t + Dt) - riʹ (t + Dt)] "

i = 1

N

{riʹ(t+Dt)}

+ Bk ({ Dt 2gk })

!sk

!ri

= sk ({ riʹ (t + Dt) }) + gkʹ"
i = 1

N

{riʹ(t+Dt)}

"
kʹ = 1

M
−Dt 2

mi

!skʹ

!ri {ri(t)}

+ Bk ({ Dt 2gk })

= sk ({ riʹ (t + Dt) }) + Akkʹ Dt 2gkʹ + Bk ({ Dt 2gk })"
kʹ

Linearized equation to be solved

Constraints to be imposed

Linearized equation

where

sk ({ ri (t + Dt) }) = 0 k = 1, … M

sk ({ ri (t + Dt) }) = sk ({ riʹ (t + Dt) }) + Akkʹ Dt 2gkʹ + Bk ({ Dt 2gk })!
kʹ = 1

M

= 0

i = 1

"sk

"ri

Akkʹ = −!
N

{riʹ(t+Dt)}

1
mi

"skʹ

"ri {ri(t)}

Bk ({ Dt 2gk }) = sk ({ri (t + Dt)}) – sk ({riʹ (t + Dt)}) – Akkʹ Dt 2gkʹ
!

kʹ

Solution by iteration

Equation to be solved

Solution of linear equation

matrix inversion: only once per time step

sk ({ riʹ (t + Dt) }) + Akkʹ Dt 2gkʹ + Bk ({ Dt 2gk }) = 0!
kʹ = 1

M

{ Dt 2gk
(�) }{ Dt 2gk

(�+1)}

Dt 2gkʹ
(�+1) = - !

k = 1

M

(A–1)kʹk [sk ({ riʹ (t + Dt) }) + Bk ({ Dt 2gk
(�) })]

Sequence: from � to �+1

(⁎)

(⁎) Verlet evolution

(⁎⁎)

(⁎⁎)

(⁎⁎⁎)

(⁎⁎⁎)

Dt 2gk
(�) ri

(�)(t+Dt) Bk({ Dt 2gk
(�) }) Dt 2gk

(�+1)

!skri
(�) (t + Dt) = riʹ (t + Dt) – Dt 2

mi
"

k = 1

M

!ri {ri(t)}

gk
(�)

Bk ({ Dt 2gk
(�)}) = sk ({ri

(�)(t+Dt)}) – sk ({riʹ (t+Dt)}) – Akkʹ Dt 2gkʹ
(�)"

kʹ = 1

M

Dt 2gkʹ
(�+1) = - "

k = 1

M

(A–1)kʹk [sk ({ riʹ (t+Dt) }) + Bk ({ Dt 2gk
(�) })]

Starting point

(⁎)

(⁎) Verlet evolution

(⁎⁎)

(⁎⁎)

(⁎⁎⁎)

(⁎⁎⁎)

Dt 2gk
(�) ri

(�)(t+Dt) Bk({ Dt 2gk
(�) }) Dt 2gk

(�+1)

!skri
(�) (t + Dt) = riʹ (t + Dt) – Dt 2

mi
"

k = 1

M

!ri {ri(t)}

gk
(�)

Bk ({ Dt 2gk
(�)}) = sk ({ri

(�)(t+Dt)}) – sk ({riʹ (t+Dt)}) – Akkʹ Dt 2gkʹ
(�)"

kʹ = 1

M

Dt 2gkʹ
(�+1) = - "

k = 1

M

(A–1)kʹk [sk ({ riʹ (t+Dt) }) + Bk ({ Dt 2gk
(��) })]

Dt 2gk
(0) = 0 ri

(0)(t+Dt) = riʹ (t+Dt) Bk({ Dt 2gk
(0) }) = 0 Dt 2gk

(1)

Convergence

§ Convergence is generally rapid.

§ Convergence can be controlled by reducing the MD time step.

lim
� → ∞

ri
(�) (t + Dt) = ri (t + Dt)

Constraints in MD

General method

SHAKE algorithm

r (t) rʹ (t + D) r (t + D)

§ Derivatives calculated in two points per timestep.
§ Higher orders are considered.
§ All constraints are treated concurrently.

r (t) r (t + D)rʹ (t + D)

§ Derivatives continuously recalculated as convergence proceeds.
§ Only linear order is retained.
§ One constraint at the time is treated.

SHAKE algorithm

Schematic flow chart of algorithm

3. Loop over successive refinements with iterations labeled by � = 1,…∞ .

4. Inner loop over constraints: k = 1, … M .

Next k .
Next � .

5. End when constraints are satisfied.

1. Calculate , corresponding to the Verlet evolution without constraints.riʹ (t + Dt)

2. Set . ri
(0)(t+Dt) = riʹ (t+Dt)

Partial update of ri
(��) for a given constraint k .

Partial update of the coordinates at iteration step � and at constraint k

Enforcement of constraint k
linear term only

!skri
NEW = ri

OLD – Dt 2lk
(�)

!ri {ri (t)}

where ri (t) are the positions at the previous timestep t

and ri
OLD / ri

NEW are the positions before / after this partial update.

0 = sk ({ ri
NEW })

Partial update in SHAKE algorithm

!sk

!ri

= sk ({ ri
OLD }) + (ri

NEW – ri
OLD) · "

i = 1

N

{ri
OLD}

!sk

!ri

= sk ({ ri
OLD }) – Dt 2lk

(�) "
i = 1

N

{ri
OLD}

!sk

!ri {ri (t)}

Simple linear equation for lk
(�)

Considerations about SHAKE algorithm

§ No matrix inversion is required. This contributes to the speed of the algorithm.

§ Derivatives are recalculated as convergence proceeds. The linear expansion
progressively becomes a better approximation as convergence approaches.

§ Note the sum over particles i = 1 … N : The SHAKE algorithm
is particularly convenient when each of the various constraints does not
depend on the positions of many different atoms. This makes the SHAKE

algorithm particularly useful for bond constraints (just two particles involved).

Dt 2lk(�) =
sk ({ ri OLD })

!sk
!ri

"
i = 1

N

{ri OLD}

!sk
!ri {ri (t)}

Course 14/2

§ General method

§ SHAKE algorithm

Constraints in MD (2/2): general method and SHAKE algorithm

