Course 13/2

Ewald summation (2/2)

= E: Long-range interaction (Fourier space)
= E_2: Self-interaction correction
= E_3): Short-range interaction (real space)

= Role of Ewald parameter



E.Y : Long-range interaction (Fourier space)
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We need to find the potential associated with the Gaussian charges!



E.(Y) : Long-range interaction (Fourier space)

For a point charge in the origin, p?(r) = & (r), the associated Gaussian
charge is
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where «a = 552 is the Ewald parameter.

The charge density associated with all the Gaussian ions then reads:
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Transformation to Fourier space
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where the vectors k need to ensure that plane-waves e used

in the expansion satisfy the periodic boundary conditions of the unit cell.
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Full Gaussian charge density in Fourier space

In real space
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Spase change of variable and Fourier transform of a Gaussian
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Potential of full Gaussian charge density

Poisson equation in real space: — V2 ¢y (7) = 47 p ( 7)
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« For k=0, the potential cannot be determined, but the average potential
does not affect the energy for a neutral system.

This potential is periodic and thus consistent with a vanishing electric field.



Calculation of long-range interaction E ")
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= Theterm exp[-k?/(4a)] guarantees a fast convergence with k.
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» Delocalized charge from electron wave functions can be added up to ,5( k) .



E 2 . Self-interaction correction

For a Gaussian charge in the origin:

pCi(r) = q (—) e
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To find the associated potential, we need to solve the Poisson equation:
—-V2¢C (r) = 4np®(r)

To address this a problem of spherical symmetry, we express the Laplacian
in spherical coordinates:
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The problem becomes:
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Solution of Poisson equation by radial integration
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We integrate both sides from oo to r:
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We integrate both sides from O to r:
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Potential from a Gaussian charge distribution

change of variable
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where the error function erf is defined as
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Error function
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Calculation of self-interaction correction E_?

Potential from a Gaussian charge distribution
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$° = point-charge behavior!
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Self-interaction of a point charge with its corresponding Gaussian charge:
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E . corrects for the self-interaction (minus sign) of all Gaussian charges:
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E.®) : Short-range interaction (real space)

Potential due to both point charge and Gaussian charge at nJ
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Fast convergence since contributions vanish quickly for r » 1+1/a



Role of Ewald parameter
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