
Course 13/2

Ewald summation (2/2)

§ Ec
(1) : Long-range interaction (Fourier space)

§ Ec
(2) : Self-interaction correction

§ Ec
(3) : Short-range interaction (real space) 

§ Role of Ewald parameter



Ec
(1) : Long-range interaction (Fourier space)
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We need to find the potential associated with the Gaussian charges!
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Ec
(1) : Long-range interaction (Fourier space)

For a point charge in the origin,  r P ( r )  =  d ( r ) , the associated Gaussian 

charge is 

where     a =              is the Ewald parameter. 

The charge density associated with all the Gaussian ions then reads:
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Transformation to Fourier space

V is the volume of 
the simulation cell

r1 ( r )  = r1 ( k )  e  !
k
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where the vectors    k need to ensure that plane-waves    e             used 
in the expansion satisfy the periodic boundary conditions of the unit cell.
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Full Gaussian charge density in Fourier space

In real space

In Fourier space

all 
space

change of variable and 

change of variable and Fourier transform of a Gaussian
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Potential of full Gaussian charge density

Poisson equation in real space: 

The potential expanded in plane waves: 

Poisson equation in Fourier space:

• This potential is periodic and thus consistent with a vanishing electric field. 
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For  k ≠ 0  : 

• For  k = 0 , the potential cannot be determined, but the average potential 
does not affect the energy for a neutral system.
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Calculation of long-range interaction Ec
(1)

where
Fourier components of the
density of point charges

§ The term     exp [ - k2 / ( 4a ) ]     guarantees a fast convergence with k.
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§ Delocalized charge from electron wave functions can be added up to   r ( k )  .~



Ec
(2) : Self-interaction correction

For a Gaussian charge in the origin: 

To find the associated potential, we need to solve the Poisson equation:

To address this a problem of spherical symmetry, we express the Laplacian 
in spherical coordinates:

The problem becomes: 
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Solution of Poisson equation by radial integration

Poisson equation:

We integrate both sides from ∞ to r : 

For r → ∞,  f G → 1/r ⇒ (r f G)  →  1   ⇒ % (r f G)
%r →  0

We integrate both sides from 0 to r : 
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Potential from a Gaussian charge distribution

where the error function erf is defined as 

potential from a Gaussian
charge distribution

change of variable
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Error function 

2. 

Properties:
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Calculation of self-interaction correction Ec
(2)

Potential from a Gaussian charge distribution

NB  For r ≫ 1/ a , f GI → qI / r  
point-charge behavior!

Self-interaction of a point charge with its corresponding Gaussian charge:

Ec
(2) corrects for the self-interaction (minus sign) of all Gaussian charges:

NB independent on atomic positions; 
can be calculated once in MD.
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Ec
(3) : Short-range interaction (real space)

Potential due to both point charge and Gaussian charge at  nJ :

Ec
(3) can then be written as

Fast convergence since contributions vanish quickly for r ≫ 1/ a
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Role of Ewald parameter
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Good screening:
real space: fast convergence
Fourier space: “hard” Gaussians
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Poor screening:
real space: slow convergence
Fourier space: “soft” Gaussians
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