Course 12/2

Errors in correlated sampling

- Errors in uncorrelated sampling
- Correlation function
- Correlation time
- Expression for error
- Error from « time » averages
- Blocking analysis

Errors in uncorrelated sampling

$$I = \int d\overrightarrow{X} \ \omega (\overrightarrow{X}) A (\overrightarrow{X})$$
with configurations sampled according to normalized $\omega (\overrightarrow{X})$

The integral is obtained as a « time » average:

$$I = \overline{A} = \frac{1}{N} \sum_{n=1}^{N} A_n$$

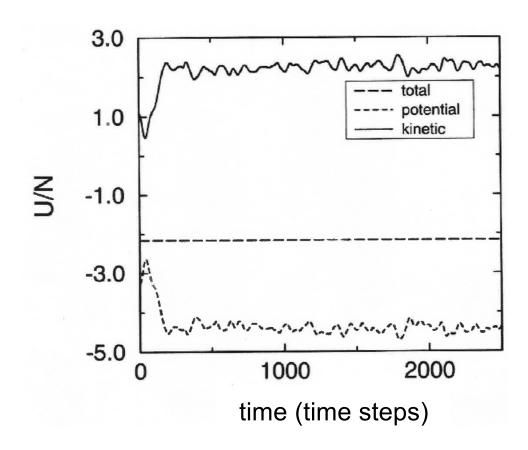
where A_n is a configuration-dependent physical quantity.

When the A_n are independent, we have seen that $\sigma_I = \frac{1}{\sqrt{N}} \sigma_A$ with $\sigma_A^2 = \langle A^2 \rangle - \langle A \rangle^2$, where $\langle ... \rangle$ indicates the average over many independent simulations.

For sufficiently long simulations, σ_A can be obtained from $\sigma_A^2 = \overline{A^2} - (\overline{A})^2$

Correlated sampling

$$I = \int d\vec{X} \ \omega (\vec{X}) A (\vec{X})$$
with configurations sampled according to normalized $\omega (\vec{X})$



What is σ_I for N correlated data?

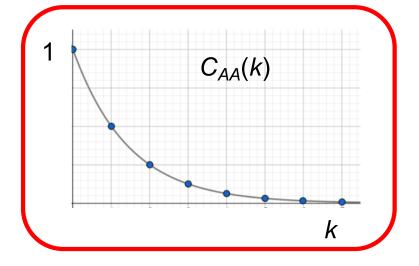
Correlation function

$$C_{AA}(k) = \frac{\langle (A_n - \langle A_n \rangle) (A_{n+k} - \langle A_{n+k} \rangle) \rangle}{\langle A_n^2 \rangle - \langle A_n \rangle^2} = \frac{\langle A_n A_{n+k} \rangle - \langle A_n \rangle^2}{\sigma_A^2}$$

where \(\ldots\) indicates the average over many independent simulations.

Time translation invariance at equilibrium

•
$$C_{AA}(k=0)=1$$



$$\lim_{k \to \infty} \langle A_n A_{n+k} \rangle = \langle A_n \rangle \langle A_{n+k} \rangle = \langle A_n \rangle^2 \Rightarrow \lim_{k \to \infty} C_{AA}(k) = 0$$

independence at large k

Correlation time

Definition
$$\tau = \frac{1}{2} \sum_{k=-\infty}^{+\infty} C_{AA}(k)$$

For an exponentially decaying correlation function, one finds $\tau = \tilde{\tau}$ for large τ .



Proof

We use for this:
$$\sum_{k=0}^{\infty} q^n = \frac{1}{1-q}$$

for
$$q < 1$$

by definition

$$\tau = \frac{1}{2} \sum_{k=-\infty}^{+\infty} e^{-|k|/\tilde{\tau}} = \frac{1}{2} \left(\sum_{k=0}^{\infty} e^{-|k|/\tilde{\tau}} + \sum_{k=0}^{\infty} e^{-|k|/\tilde{\tau}} - 1 \right)$$
$$= \frac{1}{1 - e^{-1/\tilde{\tau}}} - \frac{1}{2} = \tilde{\tau}$$

Expression for error

$$\sigma_{I}^{2} = \left\langle \left[\frac{1}{N} \sum_{n=1}^{N} A_{n} - \left\langle \frac{1}{N} \sum_{n=1}^{N} A_{n} \right\rangle \right]^{2} \right\rangle$$

$$= \left\langle \frac{1}{N^{2}} \sum_{n,m=1}^{N} A_{n} A_{m} \right\rangle - \left\langle \frac{1}{N} \sum_{n=1}^{N} A_{n} \right\rangle^{2}$$

$$= \frac{1}{N^{2}} \left\{ \sum_{n,m=1}^{N} \left\langle A_{n} A_{m} \right\rangle - \sum_{n,m=1}^{N} \left\langle A_{n} \right\rangle \left\langle A_{m} \right\rangle \right\}$$

$$= \frac{\sigma_{A}^{2}}{N^{2}} \sum_{n=1}^{N} \sum_{n=1}^{N} C_{AA}(m-n)$$

The error can be expressed in terms of the correlation function!

(...) indicates the average over many independent simulations.

Expression for error

$$\sum_{n=1}^{N} \sum_{m=1}^{N} C_{AA}(m-n) \longrightarrow \sum_{\ell=\ell_{\min}}^{\ell_{\max}} C_{AA}(\ell) \cdot F(\ell)$$

double sum but C_{AA} only depends on $\ell = m - n$, with $\ell_{min} = -(N-1)$ and $\ell_{max} = N-1$

Frequency

Example: N = 4

frequency of $\ell = 0 : N$ frequency of $\ell = +1 : N-1$ frequency of $\ell = -1 : N-1$: frequency of $\ell : N-|\ell|$

frequency of term ℓ

Expression for error

$$\sigma_{I}^{2} = \frac{\sigma_{A}^{2}}{N^{2}} \sum_{n=1}^{N} \sum_{m=1}^{N} C_{AA}(m-n) = \frac{\sigma_{A}^{2}}{N} \sum_{\ell=\ell_{\min}}^{\ell_{\max}} C_{AA}(\ell) \cdot \left(1 - \frac{|\ell|}{N}\right)$$

$$= \int_{N \to \infty}^{+\infty} \frac{\sigma_A^2}{N} \sum_{\ell=-\infty}^{+\infty} C_{AA}(\ell) = \frac{\sigma_A^2}{N} \cdot 2\tau$$

The error can be expressed in terms of the correlation time!

To sum up:

$$\sigma_I^{\text{UNCORR.}} = \frac{\sigma_A}{\sqrt{N}}$$

$$\sigma_I^{\text{CORR.}} = \frac{\sigma_A}{\sqrt{N}} \cdot \sqrt{2\tau} = \sigma_I^{\text{UNCORR.}} \cdot \sqrt{2\tau}$$

Error from « time » averages

$$\sigma_A^2 = \overline{A^2} - (\overline{A})^2$$

estimated from « time » averages

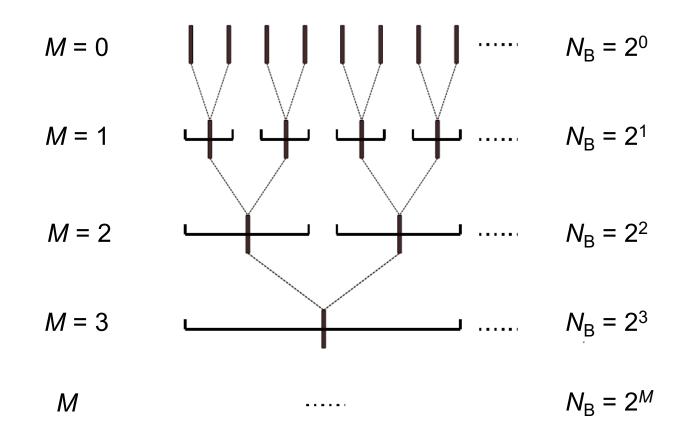
$$\tau = \frac{1}{2} \sum_{n = -\infty}^{+\infty} \overline{C_{AA}(n)}$$

estimated from « time » averages

$$\sigma_I^2 = \frac{\sigma_A^2}{N} \cdot 2\tau$$

H. Flyvbjerg and H. G. Petersen, *J. Chem. Phys.* **91**, 461 (1989).

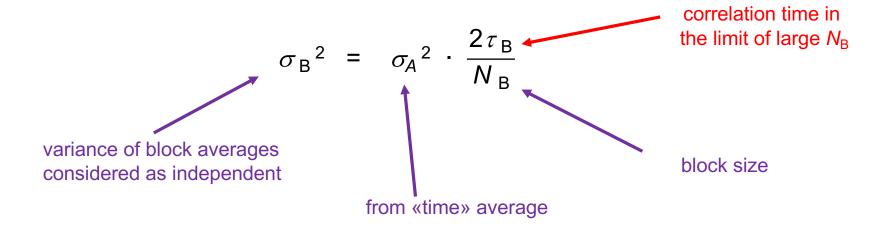
The data are chopped into blocks of size N_B and are averaged over the blocks. The averages obtained in this way are treated as if they were independent. When N_B is sufficiently large, this will eventually become true.



For a given block size $N_{\rm B}$, we obtain $N/N_{\rm B}$ block averages.

When $N_{\rm B}$ is larger than the correlation time, these block averages can be considered as independent and the associated variance $\sigma_{\rm B}{}^2$ can be calculated.

From our error analysis, for a block of $N_{\rm B}$ data, the error can be written as



$$2\tau_{B} = \frac{N_{B}\sigma_{B}^{2}}{\sigma_{A}^{2}} \longrightarrow 2\tau_{c}$$

$$N_{B} \to \infty$$

constant correlation time!

Full simulation

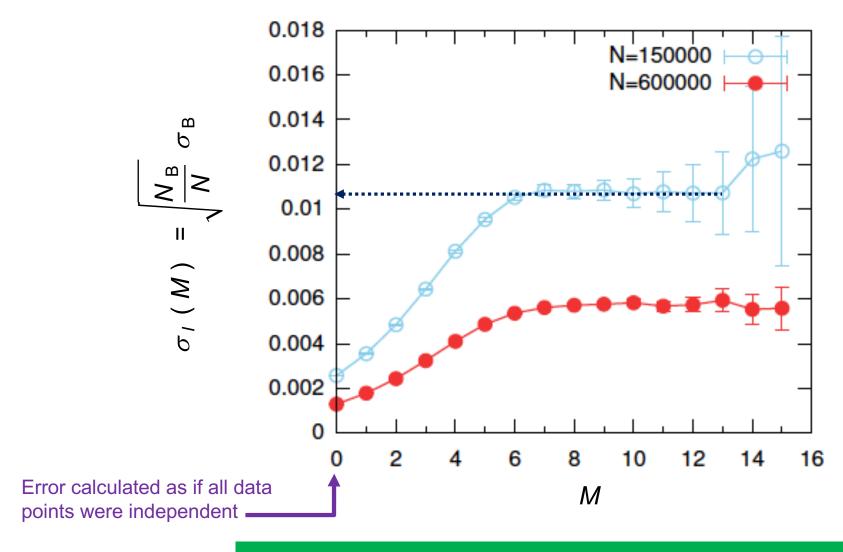
$$\sigma_I^2 = \frac{\sigma_A^2}{N} \cdot 2\tau$$

For a given transformation with block size $N_B = 2^M$:

$$\sigma_{I}^{2}(M) = \frac{\sigma_{A}^{2}}{N} \cdot 2\tau_{B} = \frac{N_{B}\sigma_{B}^{2}}{N}$$

$$Constant N$$

$$2\tau_{B} = \frac{N_{B}\sigma_{B}^{2}}{\sigma_{A}^{2}}$$



Note that fluctuations set in for large M: few blocks, large errors.

If the plateau is not seen, more data points need to be collected (increase N).

Course 12/2

Errors in correlated sampling

- Errors in uncorrelated sampling
- Correlation function
- Correlation time
- Expression for error
- Error from « time » averages
- Blocking analysis