Course 11/1

Metropolis algorithm

- Detailed balance
- Metropolis algorithm
- Choice of trial step
- Choice of starting configuration

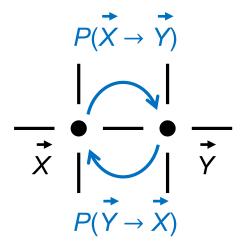
Detailed balance

The invariant distribution satisfies the following master equation:

$$N(\overrightarrow{X}, n+1) - N(\overrightarrow{X}, n) = -\sum_{\overrightarrow{Y}} P(\overrightarrow{X} \to \overrightarrow{Y}) N(\overrightarrow{X}, n) + \sum_{\overrightarrow{Y}} P(\overrightarrow{Y} \to \overrightarrow{X}) N(\overrightarrow{Y}, n)$$

Where $N(\overrightarrow{X}, n)$ is the number of walkers in configuration \overrightarrow{X} at step n of the Markovian chain.

A particular solution of this equation can be found by imposing the condition of detailed balance:

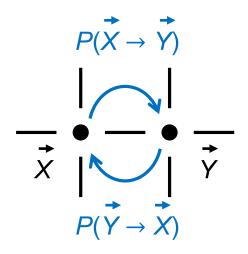


No net flux of walkers across one "connection"

$$N(X \to Y, n) = N(X,n) P(X \to Y)$$

$$N(Y \to X, n) = N(Y,n) P(Y \to X)$$

Detailed balance



$$N(X \to Y, n) = N(X,n) P(X \to Y)$$

$$N(Y \to X, n) = N(Y,n) P(Y \to X)$$

Net flux from Y to X:

$$\Delta N(Y \to X, n) = N(Y \to X, n) - N(X \to Y, n)$$

$$= N(Y, n) P(X \to Y) \left[\frac{P(Y \to X)}{P(X \to Y)} - \frac{N(X, n)}{N(Y, n)} \right]$$

At equilibrium $\Delta N = 0$

$$\frac{N(\overrightarrow{X}, eq)}{N(\overrightarrow{Y}, eq)} = \frac{P(\overrightarrow{Y} \to \overrightarrow{X})}{P(\overrightarrow{X} \to \overrightarrow{Y})}$$

Restoration of equilibrium

Net flux from Y to X:

$$\Delta N(Y \to X, n) = N(Y \to X, n) - N(X \to Y, n)$$

$$= N(Y, n) P(X \to Y) \left[\frac{P(Y \to X)}{P(X \to Y)} - \frac{N(X, n)}{N(Y, n)} \right]$$

At equilibrium $\Delta N = 0$

$$\frac{N(\overrightarrow{X}, eq)}{N(\overrightarrow{Y}, eq)} = \frac{P(\overrightarrow{Y} \to \overrightarrow{X})}{P(\overrightarrow{X} \to \overrightarrow{Y})}$$

Suppose there are too many walkers in X at step n:

$$N(X,n) > N(X,eq)$$
 \Rightarrow $\Delta N(Y \to X,n) < 0$ \Rightarrow $N(X \to Y,n) > N(Y \to X,n)$

Transition probabilities & weight function: Relation

At equilibrium

$$\frac{N(\overrightarrow{X}, eq)}{N(\overrightarrow{Y}, eq)} = \frac{P(\overrightarrow{Y} \to \overrightarrow{X})}{P(\overrightarrow{X} \to \overrightarrow{Y})}$$

Our goal

$$N(X, eq) \propto \omega(X)$$

Condition to be set for the transition probabilities

$$\frac{P(\overrightarrow{Y} \to \overrightarrow{X})}{P(X \to \overrightarrow{Y})} = \frac{\omega(\overrightarrow{X})}{\omega(\overrightarrow{Y})}$$

Metropolis algorithm

Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller, J. Chem. Phys. 21, 1087 (1953)

Two-step procedure

1. Trial step For a walker at X_n , a trial step towards X_t is proposed.

The weight function $\omega(X_t)$ is evaluated and compared to $\omega(X_n)$:

$$r = \frac{\omega(X_t)}{\omega(X_n)}$$

Note that this only requires the ratio of the weight functions and not the normalization over the full configuration space!

Metropolis algorithm

$$r = \frac{\omega(X_t)}{\omega(X_n)}$$

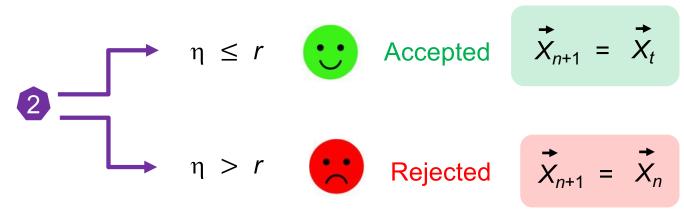
2. Decision step

r < 1

The trial configuration is less probable than the current one.

The step is accepted with probability r.

A random number $\eta \in (0,1)$ is extracted.



Does this lead to the correct invariant distribution?

In the Metropolis algorithm, the transition probability $P(X \to Y)$ is defined in two steps:

$$P(X \to Y) = T(X \to Y) A(X \to Y)$$

where $T(X \to Y)$ is the probability of selecting the $X \to Y$ transition and $A(X \to Y)$ is the probability of accepting the $X \to Y$ transition.

At equilibrium

$$\frac{N(\overrightarrow{X}, eq)}{N(\overrightarrow{Y}, eq)} = \frac{P(\overrightarrow{Y} \to \overrightarrow{X})}{P(\overrightarrow{X} \to \overrightarrow{Y})} = \frac{T(\overrightarrow{Y} \to \overrightarrow{X}) A(\overrightarrow{Y} \to \overrightarrow{X})}{T(\overrightarrow{X} \to \overrightarrow{Y}) A(\overrightarrow{X} \to \overrightarrow{Y})} = \frac{\omega(\overrightarrow{X})}{\omega(\overrightarrow{Y})}$$

Does this lead to the correct invariant distribution?

$$\frac{T(\vec{Y}\to\vec{X})}{T(\vec{X}\to\vec{Y})}A(\vec{X}\to\vec{Y})}{=}\frac{?}{\omega(\vec{X})}$$

$$\frac{A(\vec{Y}\to\vec{X})}{A(\vec{X}\to\vec{Y})}=\frac{\omega(\vec{X})}{\omega(\vec{Y})}$$

For simplicity, we assume $T(\overrightarrow{X} \rightarrow \overrightarrow{Y}) = T(\overrightarrow{Y} \rightarrow \overrightarrow{X})$, i.e. the probability of selecting the forward transition is the same as that of selecting the backward one.

Let us check for the Metropolis algorithm:

$$\frac{\overrightarrow{Y} \rightarrow \overrightarrow{X}}{\overrightarrow{\omega}(\overrightarrow{Y})} > 1 \qquad A(\overrightarrow{Y} \rightarrow \overrightarrow{X}) = 1 \qquad A(\overrightarrow{X} \rightarrow \overrightarrow{Y}) = \frac{\omega(\overrightarrow{Y})}{\omega(\overrightarrow{X})}$$

$$\frac{\omega(\overrightarrow{X})}{\omega(\overrightarrow{Y})} < 1 \qquad A(\overrightarrow{Y} \rightarrow \overrightarrow{X}) = \frac{\omega(\overrightarrow{X})}{\omega(\overrightarrow{Y})} \qquad A(\overrightarrow{X} \rightarrow \overrightarrow{Y}) = 1$$

The Metropolis algorithm yields the correct weight function!

Barker's algorithm

$$\frac{A(\overrightarrow{Y} \to \overrightarrow{X})}{A(\overrightarrow{X} \to \overrightarrow{Y})} = \frac{\omega(\overrightarrow{X})}{\omega(\overrightarrow{Y})}$$

Barker
$$A(Y \to X) = \frac{\omega(X)}{\omega(X) + \omega(Y)} \qquad A(X \to Y) = \frac{\omega(Y)}{\omega(X) + \omega(Y)}$$

Barker's algorithm also yields the correct weight function!

The Metropolis algorithm has proven to be very effective in many cases!

Choice of trial step

 Too hazardous steps lead to a high rejection rate, thus the sampling becomes inefficient.

Too safe steps lead to slow sampling (long and inefficient).

Practical recommended rule

rejected moves \cong # accepted moves

Choice of starting configuration

- It is better to choose a probable configuration as initial configuration.
- The result is independent of the starting point, but we have to wait that the system reaches equilibrium.

Integral

$$I = \int A(\vec{X}) \omega(\vec{X}) d\vec{X}$$

Metropolis estimate

$$I \cong \frac{1}{N - N_0} \sum_{i > N_0}^{N} A(\vec{X}_i)$$

 N_0 configurations are left out of the average on the way to equilibrium

Course 11/1

Metropolis algorithm

- Detailed balance
- Metropolis algorithm
- Choice of trial step
- Choice of starting configuration