Course 10/1

Importance sampling

- Importance sampling through change of variable
- Importance sampling through change of random distribution
- Example: Comparison with vs without importance sampling
- Scaling of importance sampling with dimension

Importance sampling through change of variable

Idea for speeding up Monte Carlo calculations

$$\sigma_l^2 = \frac{1}{N} \sigma_f^2$$

We can change variable in the integral without affecting the result. We should aim at finding a new integration variable for which the function to be integrated is smooth.

In this case, the Monte Carlo calculation can be performed with less points.

It is a trade-off: cost of change of variable vs gain in Monte Carlo integration.

Importance sampling through change of variable

We rewrite the integral as

$$I = \int_0^1 f(x) dx = \int_0^1 \omega(x) \frac{f(x)}{\omega(x)} dx$$

where the function $\omega(x)$ has the following properties:

- 1. $\omega(x) > 0$
- 2. $\int_0^1 \omega(x) dx = 1$ normalized
- 3. $\omega(x)$ varies like f(x)

Change of variable

$$y(x) = \int_0^x \omega(x') dx'$$

$$\frac{dy}{dx} = \omega(x) \qquad y(x=0) = 0 \qquad y(x=1) = 1$$

Importance sampling through change of variable

Integral to be calculated

$$I = \int_0^1 dx \ \omega(x) \ \frac{f(x)}{\omega(x)} = \int_0^1 dy \ \frac{f(x(y))}{\omega(x(y))}$$

Stochastic estimate

$$I \cong \frac{1}{N} \sum_{i=1}^{N} \frac{f(x(y_i))}{\omega(x(y_i))}$$

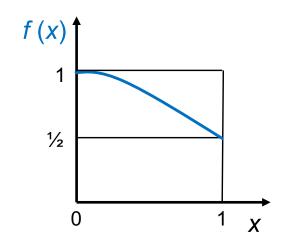
Error:

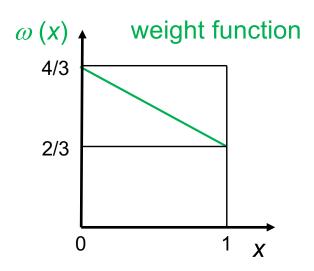
$$\sigma_I^2 = \frac{1}{N} \left[\langle \left(\frac{f}{\omega} \right)^2 \rangle - \langle \frac{f}{\omega} \rangle^2 \right] = \frac{1}{N} \sigma_{f/\omega}^2$$

Since $\omega(x)$ varies like f(x), this should result in $\sigma_{f/\omega} \ll \sigma_f$. Hence, the integration should become more efficient!

Importance sampling: Example I

$$I = \int_0^1 \frac{1}{1+x^2} dx = \frac{\pi}{4} \approx 0.78540$$





 $\omega(x) = \frac{1}{2}(4-2x)$ Let us take as weight function the linear function:

Properties:

1.
$$\omega(x) > 0$$
 for $0 < x < 1$
2. $\int_0^1 \frac{1}{3} (4 - 2x) dx = 1$ normalized

3. $\omega(x)$ varies like f(x): $\frac{f(0)}{\omega(0)} = \frac{3}{4} \frac{f(1)}{\omega(1)} = \frac{3}{4}$

Importance sampling: Example I

Change of variable

$$y(x) = \int_0^x \omega(x') dx' = \frac{4}{3} x - \frac{1}{3} x^2 = \frac{1}{3} x (4 - x)$$

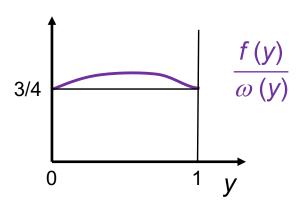
which needs to be inverted to give $x(y) = 2 - \sqrt{4 - 3y}$

New integral

$$I = \int_0^1 dy \frac{f(x(y))}{\omega(x(y))}$$

Stochastic estimate

$$I \cong \frac{1}{N} \sum_{i=1}^{N} \frac{f(x(y_i))}{\omega(x(y_i))}$$



Importance sampling: Example I

$$I = \int_0^1 \frac{1}{1+x^2} dx = \frac{\pi}{4} \approx 0.78540$$

-					
		w(x)=1		$w(x) = \frac{1}{3}(4-2x)$	
	N	1	σ_{l}	1	σ_{l}
	10	0.81491	0.04638	0.79982	0.00418
	20	0.73535	0.03392	0.79071	0.00392
	50	0.79606	0.02259	0.78472	0.00258
	100	0.79513	0.01632	0.78838	0.00194
6	005	0.78677	0.01108	0.78529	0.00140
5	500	0.78242	0.00719	0.78428	0.00091
10	000	0.78809	0.00508	0.78524	0.00064
20	000	0.78790	0.00363	0.78648	0.00045
50	000	0.78963	0.00227	0.78530	0.00028
		0.78540		0.78540	

Without importance sampling

$$I = \int_0^1 f(x) \, dx$$

Stochastic estimate

$$I \cong \frac{1}{N} \sum_{i=1}^{N} f(x_i)$$

 x_i uniformly distributed

With importance sampling

$$I = \int_0^1 dx \ \omega(x) \ \frac{f(x)}{\omega(x)}$$
$$= \int_0^1 dy \ \frac{f(x(y))}{\omega(x(y))}$$

Stochastic estimate

$$I \cong \frac{1}{N} \sum_{i=1}^{N} \frac{f(x(y_i))}{\omega(x(y_i))}$$

 y_i uniformly distributed and the $x(y_i)$ result from the inverse of

$$y(x) = \int_0^x \omega(x') dx'$$

What is the distribution of the $x(y_i)$ values?

Relationship between *y* and *x*:

$$y(x) = \int_0^x \omega(x') dx'$$

$$\frac{dy}{dx} = \omega(x)$$

$$dy = \omega(x) dx$$

but
$$p(y) = 1$$
 $p(y) dy = \omega(x) dx$

Conservation of probability!

Indeed, $\omega(x)$ can be seen as a probability density: 1. $\omega(x) > 0$

2. $\omega(x)$ is normalized

$$q(x) = \omega(x)$$

The x variables are distributed according to $\omega(x)$

With importance sampling

$$\int_0^1 \frac{f(x(y))}{\omega(x(y))} dy = \int_0^1 \frac{f(x)}{\omega(x)} \omega(x) dx$$

Stochastic estimate

$$I \cong \frac{1}{N} \sum_{i=1}^{N} \frac{f(x(y_i))}{\omega(x(y_i))}$$

y_i uniformly distributed

Stochastic estimate

$$I \cong \frac{1}{N} \sum_{i=1}^{N} \frac{f(x_i)}{\omega(x_i)}$$

 x_i distributed according to $\omega(x)$

Without importance sampling

$$I = \int_0^1 f(x) \, dx$$

Stochastic estimate

$$I \cong \frac{1}{N} \sum_{i=1}^{N} f(x_i)$$

 x_i uniformly distributed

With importance sampling

$$I = \int_0^1 \frac{f(x)}{\omega(x)} \omega(x) dx$$

Stochastic estimate

$$I \cong \frac{1}{N} \sum_{i=1}^{N} \frac{f(x_i)}{\omega(x_i)}$$

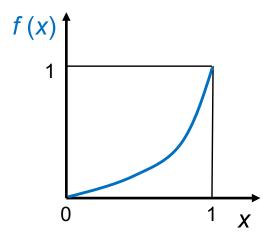
 x_i distributed according to $\omega(x)$

 $\omega(x)$ has to be chosen in such a way that it behaves like f(x). In other terms, the regions where f(x) is large should be sampled more frequently. In this way, the integral is evaluated in a more efficient way.

Importance sampling

Importance sampling: Example II

$$f(x) = \frac{1}{e-1} (e^{x} - 1)$$



Exact result

$$I = \int_0^1 f(x) dx = \frac{1}{e-1} [e^x - x]_0^1 = \frac{e-2}{e-1} \approx 0.418$$

Error with $\omega(x) = 1$

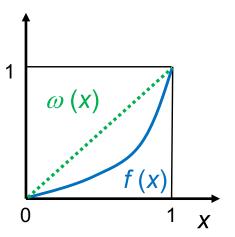
$$\sigma_{f,\omega=1}^{2} = \int_{0}^{1} [f(x) - \langle f \rangle]^{2} dx = (0.286)^{2}$$

Hence,
$$\sigma_{I,\omega=1} = \frac{1}{\sqrt{N}} \sigma_{f,\omega=1} = \frac{1}{\sqrt{N}} 0.286$$

Importance sampling: Example II

With importance sampling

$$\omega(x) = 2x$$
 (where the 2 comes from the normalization)



The integral can be rewritten but gives the same result...

$$I = \int_0^1 \frac{f(x)}{2x} 2x \, dx = \int_0^1 \frac{f(x(y))}{2x(y)} \, dy$$

Error with $\omega(x) = 2x$

$$\sigma_{f,\omega=2x^{2}} = \int_{0}^{1} \left[\frac{f(x(y))}{2x(y)} - \left\langle \frac{f(x(y))}{2x(y)} \right\rangle \right]^{2} dy$$
$$= \int_{0}^{1} \left[\frac{f(x)}{2x} - I \right]^{2} 2x dx = (0.0523)^{2}$$

Hence,
$$\sigma_{I,\omega=2x} = \frac{1}{\sqrt{N}} \sigma_{f,\omega=2x} = \frac{1}{\sqrt{N}} 0.0523$$

Importance sampling: Example II

Summary

Without importance sampling: $\omega(x) = 1$

$$I \cong \frac{1}{N} \sum_{i=1}^{N} f(x_i) = 0.418 \pm \frac{0.286}{\sqrt{N}}$$

x_i uniformly distributed

for 1% accuracy, N = 4700

With importance sampling: $\omega(x) = 2x$

$$I \cong \frac{1}{N} \sum_{i=1}^{N} \frac{f(x_i)}{2x_i} = 0.418 \pm \frac{0.0523}{\sqrt{N}}$$

 x_i distributed according to $\omega(x)$

for 1% accuracy, N = 155

Without importance sampling, we need 30× more evaluations to achieve the same accuracy as with importance sampling.

Scaling of importance sampling with dimension

In general this depends on the function to be integrated. To illustrate the scaling, we here extend the previous example to higher dimensions.

We assume that the function in *d* dimensions corresponds to a product of *d* times the same one-dimensional function.

$$F(x_1, x_2, ..., x_d) = f(x_1) \cdot f(x_2) \cdot \cdot \cdot f(x_d)$$

Then, we naturally take for the weight function:

$$W(x_1, x_2, ..., x_d) = \omega(x_1) \cdot \omega(x_2) \cdot \cdot \cdot \omega(x_d)$$

Variance

$$\sigma_{d,\omega}^{2} = \int_{0}^{1} \left(\frac{F}{W}\right)^{2} W(x_{1}, ..., x_{d}) dx_{1} \cdots dx_{d} - \left[\int_{0}^{1} \left(\frac{F}{W}\right) W(x_{1}, ..., x_{d}) dx_{1} \cdots dx_{d}\right]^{2}$$

$$= \left[\int_{0}^{1} \left(\frac{f(x)}{\omega(x)}\right)^{2} \omega(x) dx\right]^{d} - (I^{d})^{2} = \left[\sigma_{f,\omega}^{2} + I^{2}\right]^{d} - I^{2d}$$

Scaling of importance sampling with dimension

Ratio between variances with and without importance sampling

$$\frac{\sigma_{d,\omega}^{2}}{\sigma_{d,\omega=1}^{2}} = \frac{\left[\sigma_{f,\omega}^{2}/I^{2} + 1\right]^{d} - 1}{\left[\sigma_{f,\omega=1}^{2}/I^{2} + 1\right]^{d} - 1} \stackrel{d \to \infty}{=} 10^{d \log_{10}\left[\frac{1 + \sigma_{f,\omega}^{2}/I^{2}}{1 + \sigma_{f,\omega=1}^{2}/I^{2}}\right]}$$

For the f(x) and $\omega(x)$ seen in Example II, we obtain:

$$\frac{1 + \sigma_{f,\omega}^2 / I^2}{1 + \sigma_{f,\omega=1}^2 / I^2} \cong \frac{1 + (0.0523 / 0.418)^2}{1 + (0.286 / 0.418)^2} \cong 0.69179$$

$$\log_{10} 0.69179 = -0.16$$

Scaling

$$\frac{\sigma_{d,\omega}^2}{\sigma_{d,\omega=1}^2} \cong 10^{-0.16} d$$

Course 10/1

Importance sampling

- Importance sampling through change of variable
- Importance sampling through change of random distribution
- Example: Comparison with vs without importance sampling
- Scaling of importance sampling with dimension