
Course 09/2

Monte Carlo integration through uncorrelated sampling

§ Motivation

§ Integration by Monte Carlo: Method

§ Scaling of errors
o Monte Carlo in 1D
o Trapezoidal rule in 1D
o Multidimensional integrals



Motivation

We would like to calculate integrals over many variables. For instance, consider

the partition function for N particles:

3N variables

Suppose we want to use 10 points for every variable. 

But, in practice, how much time does it take 

for the case of N = 20 particles ?

Then, the cost scales like 103N.
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Performance of supercomputers

Let us use the fastest computer in the world. At this 

time (2022), the CRAY Frontier installed in Oakridge 

is the fastest and achieves:

~ 1.1 Eflop = 1018 evaluations per second. Oakridge



Motivation: Our problem with N = 20 particles

2 · 1024 age of the universe

Calculation of required time for integrating the partition function Z

Time = # operations
# operations/second

= 
103N

1 Eflop
1060

1018 /s
= = 1042 seconds

= 

Faster algorithms are needed for 
multidimensional integrals e.g. in
– statistical mechanics
– quantum mechanics 



Integration by Monte Carlo: Method

Let us focus on integrals in one dimension, even if, at the end, it will turn out
that Monte Carlo methods are more convenient than conventional schemes
only for integrals in higher dimensions.  
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Integration by Monte Carlo: Method

Without loss of generality, let us take  L = 1.
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Integration by Monte Carlo: Error

We can obtain an expression for the error by realizing that 

When the random numbers are uncorrelated (independent), the variance of  I 
is related to the variance of  f . For  N points:

xi   is a 
random number

f (xi) is a 
random number

I is an average of 
random numbers
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Integration by Monte Carlo: Error

NB 1.   sI ∝ 1
N

Scaling of error with N : 4⨉ more points 
to reduce the error by a factor of 2 !

2.   sI ∝ sf The smoother  f , the smaller  sI !
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Integration by Monte Carlo: Example
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Scaling of error with trapezoidal-rule integration (1D)

To calculate the integral we use  N  equidistant points, separated by  h = 1 / N .

Let us focus on one slice corresponding to the integral between  xi and  xi + h .
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Scaling of error with trapezoidal-rule integration (1D)

Integral between  xi and  xi + h

Expression for the derivative

By combining these expressions, we then obtain

The integral I corresponds to  N slices, so the global error for  I is  N  times larger:

error on integral 
over [ xi , xi + h ]
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Scaling of errors for multidimensional integrals

Estimate of integral in Monte Carlo integration

where 
randomly in the domain of integration. 

is chosen 

Estimate of error in Monte Carlo integration

The error scales with  N in the same way 
as in the one-dimensional case.

This result should be contrasted with 
the regular grid integration.
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Scaling of error for grid integration in  d  dimensions

We assume that the points are regularly distributed in space. 
How does the error scale with the number of points  N used?

We separate the domain  D in 
subdomains Dp, one for every 
grid point  xp .

Number of subdomains:   N

Linear dimension of subdomain:   h =  1
N 1/d

Volume of one subdomain:   hd =  1 / N

Check total volume of D :  N · hd =  1
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Scaling of error for grid integration in  d  dimensions

Integral over one subdomain  Dp

where we used the two-point formula for the gradient: error on integral 
over Dp
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Scaling of error for grid integration in  d  dimensions

Errror of integral over one subdomain  Dp
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Scaling of error: Summary

Monte Carlo

Grid integration

The Monte Carlo scaling is independent 
of dimension.

The grid integration scaling worsens with 
dimension.

Assuming that the prefactors are all of order unity, Monte Carlo integration is 
more efficient for  d ≥ 4 .

Prefactors can affect exact crossover, but different scaling behaviour remains. 

Elements affecting prefactors are the quadrature formula in grid integration 
and the weight function in Monte Carlo integration.

s I ∝ N – ½  

s I ∝ N – 2/d
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