Course 09/1

Random walk and diffusion

- Binomial distribution
- Random walk in 1D
- Link between random walk and diffusion
- Diffusion equation through master equation

Binomial distribution

Two outcomes:

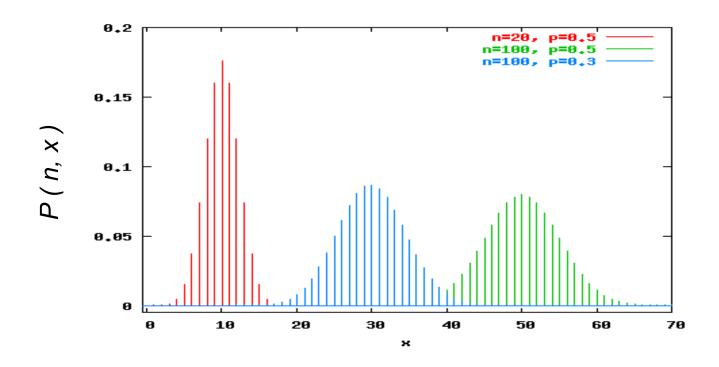
- (i) event A with probability p
- (ii) event B with probability q

Probability:

x times event A on n events

$$P(n, x) = \frac{n!}{x! (n-x)!} p^x q^{n-x}$$

Binomial distribution



Average of *x*:

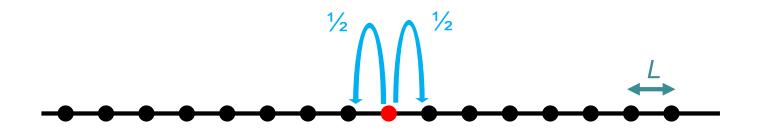
$$\mu = \langle x \rangle = n \cdot p$$

Standard deviation:
$$\sigma^2 = \langle x^2 \rangle - \langle x \rangle^2 = n \cdot p \cdot q = n \cdot p \cdot (1 - p)$$

For large *n*:

Take
$$p = q = \frac{1}{2} \implies \mu = \frac{n}{2}$$
 and $\sigma^2 = \frac{n}{4} \implies \frac{\sigma}{\mu} = \frac{1}{\sqrt{r}}$

Random walk in 1D



Binomial steps to the right steps to the left
$$P(n_{R}, n_{L}) = \frac{(n_{R} + n_{L})!}{n_{R}! \ n_{L}!} \ p^{n_{R}} q^{n_{L}} = \left(\frac{1}{2}\right)^{n_{R} + n_{L}} \frac{(n_{R} + n_{L})!}{n_{R}! \ n_{L}!}$$

Average
$$\langle n_R \rangle = n \cdot p = \frac{n}{2} = \langle n_R \rangle$$

Variance
$$\operatorname{Var} n_{R} = \langle (n_{R} - \langle n_{R} \rangle)^{2} \rangle = npq = \frac{n}{4}$$

Displacement
$$x = (n_R - n_L) L = m L$$

$$n = n_R + n_L$$

$$m = n_R - n_L$$

Random walk in 1D

Change of variables

$$\begin{cases} n = n_{R} + n_{L} \\ m = n_{R} - n_{L} \end{cases} \Rightarrow \begin{cases} n_{R} = (n + m)/2 \\ n_{L} = (n - m)/2 \end{cases}$$

Binomial probability

$$P(n, m) = \left(\frac{1}{2}\right)^n \frac{n!}{\left(\frac{n+m}{2}\right)! \left(\frac{n-m}{2}\right)!}$$

Average
$$\langle m \rangle = \langle n_R - n_L \rangle = \langle n_R \rangle - \langle n_L \rangle = 0$$

$$\sigma = \sqrt{\text{Var } m} = \sqrt{n}$$

NB $m \ll n$, for $n \rightarrow \infty$

Root mean square displacement

$$d_{\rm rms} = \sqrt{n} \cdot L$$

Random walk in 1D: from binomial to normal

Binomial distribution

$$P(n, m) = \left(\frac{1}{2}\right)^n \frac{n!}{\left(\frac{n+m}{2}\right)! \left(\frac{n-m}{2}\right)!}$$

Approximations in the limit of large *n*

- 1. Stirling approximation: $n! \cong \sqrt{2\pi n} e^{n \ln n n}$
- 2. First-order expansion for small ε : In $(1 \pm \varepsilon) \cong \pm \varepsilon$

Result: normal distribution

$$P(n, m) = \sqrt{\frac{2}{\pi n}} e^{-\frac{m^2}{2n}}$$

Link between random walk and diffusion

From discrete to continuum spatial variables

We define a continuous variable: $x = m \cdot L$

We define the probability of finding x in the interval $[x, x+\Delta x]$:

$$p(x, n) \cdot \Delta x = \sum_{i=1}^{n} P(n, m) = P(n, m) \cdot \Delta N_{m}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
probability all $m \mid x \in [x, x + \Delta x]$ number of $m \in [x, x + \Delta x]$

 ΔN_m

Example:
$$(x_L, x_R)$$
 For $n = 2$: $(2,0)$ $(1,1)$ $(0,2)$

$$m = 2 \qquad m = 0 \qquad m = -2$$
For $n = 3$: $(3,0)$ $(2,1)$ $(1,2)$ $(0,3)$

$$m = 3 \qquad m = 1 \qquad m = -1 \qquad m = -3$$
 $\Rightarrow \Delta N_m = \frac{\Delta x}{2L}$

Link between random walk and diffusion

From a discrete to a continuous spatial variable

$$p(x, n) = P(n, m) \cdot \frac{\Delta N_m}{\Delta x}$$
$$x = m \cdot L$$

$$P(n, m) = \sqrt{\frac{2}{\pi n}} e^{-\frac{m^2}{2n}}$$
$$\Delta N_m = \frac{\Delta x}{2L}$$

$$\Delta N_m = \frac{\Delta x}{2L}$$

$$p(x, n) = \frac{1}{\sqrt{2\pi nL^2}} e^{-\frac{X^2}{2nL^2}}$$

Normal distribution with $\mu = 0$ and $\sigma = \sqrt{n} \cdot L$

Link between random walk and diffusion

From a discrete to a continuous temporal variable

$$p(x,n) = \frac{1}{\sqrt{2\pi nL^2}} e^{-\frac{x^2}{2nL^2}}$$

$$= \frac{1}{\sqrt{4\pi Dt}} e^{-\frac{x^2}{2L^2t/\Delta t}}$$

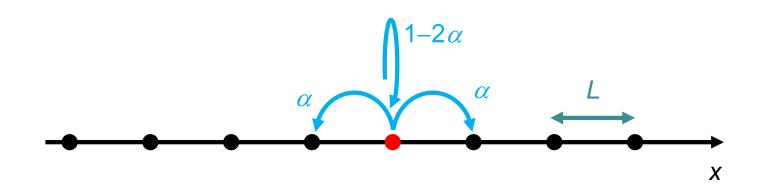
Diffusion coefficient

$$D = \frac{L^2}{2\Delta t}$$
 [D] = unit of D = m²/s

$$\mu = \langle x \rangle = 0$$

$$\sigma = d_{rms} = \sqrt{2Dt}$$

Diffusion equation through master equation



Master equation

$$\rho(x, t + \Delta t) = \alpha \rho(x + L, t) + \alpha \rho(x - L, t) + (1 - 2\alpha) \rho(x, t)$$

$$\rho(x, t + \Delta t) - \rho(x, t) = \alpha \left[\rho(x + L, t) + \rho(x - L, t) - 2\rho(x, t) \right]$$

Diffusion equation through master equation

Master equation

$$\rho(x, t + \Delta t) - \rho(x, t) = \alpha \left[\rho(x + L, t) + \rho(x - L, t) - 2\rho(x, t) \right]$$

Left-hand side

$$= \Delta t \ \frac{\partial \rho}{\partial t}(x, t)$$

This gives ...

$$\Delta t \frac{\partial \rho}{\partial t}(x, t) = \alpha L^2 \frac{\partial^2 \rho}{\partial x^2}(x, t)$$

Right-hand side

$$\rho(x + L) = \rho(x) + L \rho'(x) + \frac{L^2}{2} \rho''(x)$$
+
$$\rho(x - L) = \rho(x) - L \rho'(x) + \frac{L^2}{2} \rho''(x)$$

$$\rho(x + L) + \rho(x - L) = 2\rho(x) + L^2 \rho''(x)$$

... the diffusion equation

$$\frac{\partial \rho}{\partial t}(x,t) = D \frac{\partial^2 \rho}{\partial x^2}(x,t)$$

where the diffusion coefficient D =

$$D = \frac{\alpha L^2}{\Delta t}$$

Course 09/1

Random walk and diffusion

- Binomial distribution
- Random walk in 1D
- Link between random walk and diffusion
- Diffusion equation through master equation