Course 08/1

Random number generators (2/2)

- Portable algorithms: Schrage's algorithm
- Non-portable algorithms
- Shift-register generator

Portable algorithms: Schrage's algorithm

Motivation

Development of a computer-independent scheme for generating random numbers by avoiding overflow upon multiplication. The method is based on an approximate factorization.

Premises

Suppose we have a "modulo" generator with given a and m:

```
m = a \cdot q + r where q = [m/a] and r = m \mod a.

integer part
```

Extra condition required for this algorithm to work: r < q

Suppose the *i*-th random number is x_i . Then $z = x_i$ and $0 < z \le m - 1$.

For determining the next random number, we need to calculate $x_{i+1} = (a \cdot z) \mod m$.

z can always be written as: $z = [z/q] q + (z \mod q)$.

Portable algorithms: Schrage's algorithm

$$z = [z/q] \cdot q + (z \mod q)$$
 $x_{i+1} = (a \cdot z) \mod m$

Demonstration

$$x_{i+1} = (a \cdot z) \mod m = \{ [z/q] \cdot a \cdot q + a \cdot (z \mod q) \} \mod m$$

$$= \{ [z/q] \cdot (m-r) + a \cdot (z \mod q) \} \mod m$$
because of mod m
$$= \{ a \cdot (z \mod q) - r [z/q] \} \mod m$$

Next, we show that both terms in the curly brackets belong to the interval: (0, m-1].

Portable algorithms: Schrage's algorithm

We show that both terms belong to the interval (0, m-1].

```
a \cdot (z \mod q) \leq a \cdot (q-1) \leq m-r-a < m
because aq = m-r
of mod q
```

$$r [z/q] \leq r \cdot a < q \cdot a = m-r$$

$$m = a \cdot q + r \quad \text{Schrage's}$$

$$\text{for } z < m, \quad \text{condition}$$

$$[z/q] \leq a$$

 x_{i+1} can now be calculated without overflow: $x_{i+1} = (a \cdot z) \mod m = \{1 - 2\} \mod m$

if
$$1 \ge 2$$
: $x_{i+1} = 1 - 2$

if $1 < 2$: $x_{i+1} = 1 - 2 + n$

Non-portable algorithms

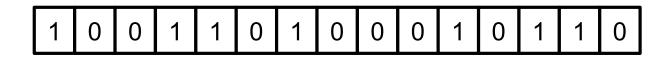
Some computers have a built-in capacity of dealing with overflow by performing modulo 2^{32} .

Advantage: very fast!

Example: $x_{n+1} = 69069 \cdot x_n$

Shift-register generator

In the computer, a number is memorized as a string of 0 and 1:



$$x_{i-n}$$
 $b^{(1)}_{i-n}$ $b^{(k)}_{i-n}$ \vdots $b^{(k)}_{i}$ \vdots $b^{(k)}_{i}$ \vdots \vdots

$$b^{(k)}_{i} = (c_1 b^{(k)}_{i-1} + c_2 b^{(k)}_{i-2} + \dots + c_n b^{(k)}_{i-n}) \mod 2$$
 with $c_i = 0/1$

Maximum cycle: $2^{32}-1$ (for special combinations of the c_i)

Start: n random numbers have to fill the register before starting

Simple version: $b^{(k)}_{i} = (b^{(k)}_{i-p} + b^{(k)}_{i-q}) \mod 2$

with magic pairs (p,q) for optimal cycles: (98,27), (521,32), (250,103)

Course 08/1

Random number generators (2/2)

- Portable algorithms: Schrage's algorithm
- Non-portable algorithms
- Shift-register generator