Course 07/2

Random number generators (1/2)

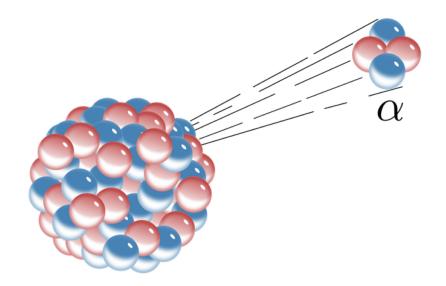
- Random numbers on the computer
- Modulo generator
 - Properties
 - Shuffle algorithm
 - L'Ecuyer's algorithm

Random number on the computer

Pure or true random numbers

A true random number – to be truly *unpredictable* – must be taken from the physical world taking advantage e.g. of some underlying quantum mechanical property or of statistically random noise signals.

Example: decaying radioactive source emission of α particles



After each interval of 20 ms

Even number of events $\rightarrow 0$ Odd number of events $\rightarrow 1$

Stored on an internet site? 10⁶? Limitations, unpractical.

Random number on the computer

Pseudo random numbers

Numbers generated by a computer in a fully deterministic fashion using a mathematical formula and previously generated numbers.
Fully predictable!

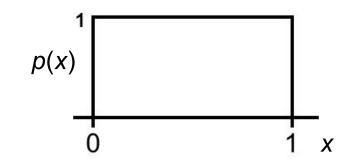
Scope

Generate a sequence which is difficult to discern from a sequence of true random numbers. Depending on the properties requested (i.e. the application), this might be sufficient to operate as a true series of random numbers.

Criteria for series of pseudo random numbers

Uniformity

- For instance in the interval [0,1]
- Probability density p(x), i.e. p(x)dx is the probability of finding x in the interval [x, x+dx].



• Uniformity:
$$\begin{cases} p(x) = 1 & \text{for } 0 < x < 1 \\ p(x) = 0 & \text{elsewhere} \end{cases}$$

Nonuniform distributions are also possible.

Absence of correlations

- Probability for successive events x_i and x_{i+1} : $P(x_i, x_{i+1}) = P(x_i) \cdot P(x_{i+1})$
- Same for $P(x_i, x_j)$ with j > i + 1.
- Same for $P(x_i, x_j, x_k)$ or with distribution functions of more than three variables.

- On the computer, we only have discrete values, which correspond to integers.
- Congruential algorithm:

$$x_{i+1} = (a \cdot x_i + c) \mod m$$
 for $i > 0$
where $x_0 =$ "seed" and, usually, $c = 0$.

- By dividing by m, one gets values between 0 and 1.
- For $x_0 = 0$ (and c = 0), all $x_i = 0$ (sequence of "0").
- m-1 of possible different random numbers.
- We get indeed m-1 different random numbers for special combinations of a and m.
- Example: a = 12, m = 143. We start with x_i.
 x_{i+1} = (12 x_i) mod 143
 x_{i+2} = (12² x_i) mod 143 = (144 x_i) mod 143 = (143 x_i + x_i) mod 143 = x_i
 Cycle of 2!
- For r available bits, $m = 2^r 1$. In a 32-bit computer, r = 31, because one bit is used to store the sign.

Minimal standard (Park & Miller)

• $a = 7^5 = 16807$, $m = 2^r - 1$, c = 0.

Problems

- 1. Low order serial correlations
 - small a: small number followed by small number
 - $-(x_i, x_{i+1})$ give lines in 2D and (x_i, x_{i+1}, x_{i+2}) planes in 3D.

→ shuffle algorithm

2. Small period

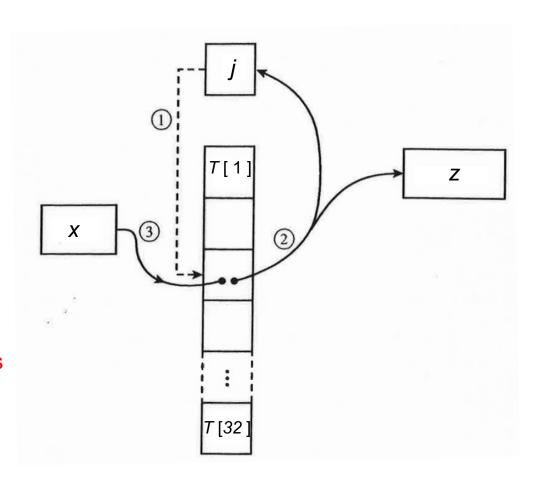
→ combination of different random number series

Shuffle algorithm

- Congruential series: x_i , x_{i+1} , x_{i+2} ,.....
- Memory table : *T* [1], *T* [*j*], *T* [32] (32 slots)
- Scope: generation of series ..., z_i , z_{i+1} , z_{i+2} ,..... without low-order serial correlations.

- Fill the memory table T
- O Suppose that we have z_i and that we want to determine z_{i+1} .
- 1. Use memory slot j determined from z_i .
- 2. Take $z_{i+1} = T[j]$.
- 3. Shuffle x_{i+1} into T[j].

In this way, the outgoing *z* number originates from a previous *x* number that has been put in the table, 32 steps earlier on average.



Combination of different series (L'Ecuyer 1988)

- We illustrate this point through an example.
- Suppose we have two congruential series:

$$x_n = 40014 x_{n-1} \mod (2^{31} - 85)$$

 $y_n = 40692 y_{n-1} \mod (2^{31} - 249)$

Their periods are (factorial decomposition):

$$m_x - 1 = 2 \cdot 3 \cdot 7 \cdot 631 \cdot 81031$$
 ~ $2 \cdot 10^9$
 $m_y - 1 = 2 \cdot 19 \cdot 31 \cdot 1019 \cdot 1789$ ~ $2 \cdot 10^9$

New random number series:

$$z_n = (x_n - y_n) \mod m_x$$

Period of new series :

$$\frac{(m_x - 1) \cdot (m_y - 1)}{2} \approx 2.3 \cdot 10^{18} \approx 2^{62}$$

Periods that can be achieved today with more sophisticated tricks: 2¹⁵⁰⁰.

Random number generator: RAN2

Algorithm proposed by "Numerical Recipes"

- Congruential (modulo) algorithm Minimal Standard.
- Shuffle algorithm to break low-order serial correlations.
- L'Ecuyer's algorithm to increase the period.

Course 07/2

Random number generators (1/2)

- Random numbers on the computer
- Modulo generator
 - Properties
 - Shuffle algorithm
 - L'Ecuyer's algorithm