Course 07/1

Notions of probability. Central limit theorem

- Some simple definitions in probability theory
- Distribution of averages.
- Central limit theorem
- Central limit theorem for generating a Gaussian distribution

Some definitions in probability theory

Random number Unpredictable numerical quantity, result from an

experiment (observable), which can vary discretely

or continuously.

Event Obtaining an observable.

Frequency $f(x) = n_x/n$, where n_x is the number of events with observable x and n is the total number of events.

Distribution of frequencies f(x) vs x.

Probability $P(x) = \lim_{n \to \infty} \frac{n_x}{n}$ (discrete variable)

Properties: i. $0 \le P(x) \le 1$

ii. $\sum_{x} P(x) = 1$

Probability (continuous variable) $\int_{X_{inf}}^{X_{sup}} p(x) dx = 1$

Some definitions in probability theory

Mean value

$$\langle x \rangle = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{n} \sum_{x} x n_x = \sum_{x} x \frac{n_x}{n}$$

$$= \sum_{x \in P(x)} x P(x)$$

$$= \int_{-\infty}^{\infty} x \ p(x) \ dx$$

continuous

Some definitions in probability theory

Variance σ^2 , Var

Standard deviation σ

$$\sigma^{2} = \frac{1}{n} \sum_{i=1}^{n} (\Delta x_{i})^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \langle x \rangle)^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} (x_{i}^{2} - 2x_{i} \langle x \rangle + \langle x \rangle^{2})$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} - \langle x \rangle^{2}$$

$$\sigma^2 = \langle x^2 \rangle - \langle x \rangle^2$$

Distribution of averages

Think at people (j = 1,...N) measuring in sequence the size of nails x_i (i = 1,...n).

...,
$$x_i^{(1)}$$
, $x_{i+1}^{(1)}$, ...

..., $x_i^{(2)}$, ...

..., $x_i^{(j)}$, ...

..., $x_i^{(N)}$, ...

$$i = 1, ..., n$$

The series are fully independent!

Definition of "average" variable A_i

$$A_i = \frac{1}{N} \sum_{j=1}^{N} x_i^{(j)}$$

Properties of distribution of averages

Mean value

$$\langle A \rangle = \frac{1}{n} \sum_{j=1}^{n} \frac{1}{N} \sum_{j=1}^{N} x_i^{(j)} = \frac{1}{N} \sum_{j=1}^{N} \langle x \rangle = \frac{1}{N} N \langle x \rangle = \langle x \rangle$$

Variance

$$\operatorname{Var} A = \langle (A - \langle A \rangle)^{2} \rangle = \langle \left(\frac{1}{N} \sum_{j=1}^{N} x^{(j)} - \langle x \rangle\right)^{2} \rangle = \frac{1}{N^{2}} \langle \left(\sum_{j=1}^{N} x^{(j)} - N \langle x \rangle\right)^{2} \rangle$$

$$= \frac{1}{N^{2}} \langle \left(\sum_{j=1}^{N} (x^{(j)} - \langle x \rangle)\right)^{2} \rangle$$

$$= \frac{1}{N^{2}} \langle \left(\sum_{j=1}^{N} (x^{(j)} - \langle x \rangle)\right) \left(\sum_{j'=1}^{N} (x^{(j')} - \langle x \rangle)\right) \rangle$$

Properties of distribution of averages

Variance

$$\operatorname{Var} A = \frac{1}{N^2} \left\langle \left(\sum_{j=1}^{N} (x^{(j)} - \langle x \rangle) \right) \left(\sum_{j'=1}^{N} (x^{(j')} - \langle x \rangle) \right) \right\rangle$$

terms with $j \neq j'$ are independent:

$$\langle \Delta x^{(j)} \Delta x^{(j')} \rangle = \langle \Delta x^{(j)} \rangle \cdot \langle \Delta x^{(j')} \rangle = 0$$

Hence, only terms with j = j' remain.

Var
$$A = \frac{1}{N^2} \langle \sum_{j=1}^{N} (x^{(j)} - \langle x \rangle)^2 \rangle = \frac{1}{n} \sum_{j=1}^{n} \frac{1}{N^2} \sum_{j=1}^{N} (x_i^{(j)} - \langle x \rangle)^2$$

All $x^{(j)}$ are independent: mean of sums \rightarrow sum of means

Var
$$A = \frac{1}{N^2} \sum_{j=1}^{N} \langle (x^{(j)} - \langle x \rangle)^2 \rangle = \frac{1}{N^2} N \sigma_x^2 = \frac{\sigma_x^2}{N}$$

Properties of distribution of averages: Summary

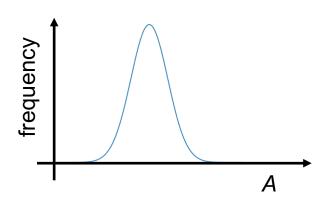
Mean value

$$\mu_A = \langle A \rangle = \langle x \rangle = \mu_x$$

Variance

$$\sigma^2_A = \frac{\sigma^2_X}{N}$$

What about the full distribution?

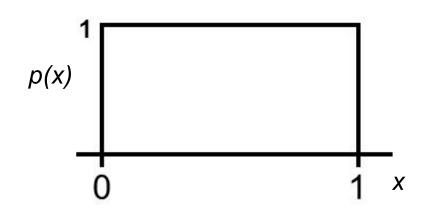


Central limit theorem

- Important theorem in statistics
- In the limit $N \to \infty$, a random number that corresponds to the sum of N random numbers is distributed according to a normal distribution (Gaussian), provided the variances of all random numbers in the sum are:
 - i. finite
 - ii. of the same order

(there are some exceptions)

Computer-generated uniform distribution p(x) of random numbers x between 0 and 1.



Mean value

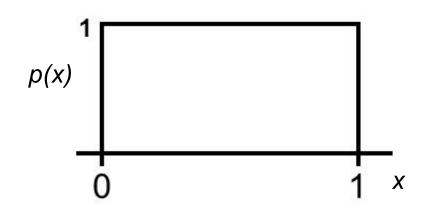
$$\mu_{x} = \int_{0}^{1} x \, dx = \frac{1}{2} x^{2} \Big|_{0}^{1} = \frac{1}{2}$$

Variance

$$\sigma_{x}^{2} = \int_{0}^{1} x^{2} dx - \frac{1}{4} = \frac{1}{3} x^{3} \Big|_{0}^{1} - \frac{1}{4} = \frac{1}{3} - \frac{1}{4} = \frac{1}{12}$$

New variable: average over *N* values

$$A = \frac{1}{N} \sum_{j=1}^{N} x^{(j)}$$



Mean value and variance

$$\mu_A = \langle A \rangle = \frac{1}{N} (N \langle x \rangle) = \frac{1}{2}$$

$$\sigma_A^2 = \frac{\sigma_X^2}{N} = \frac{1}{12N}$$

Approximate Gaussian variable

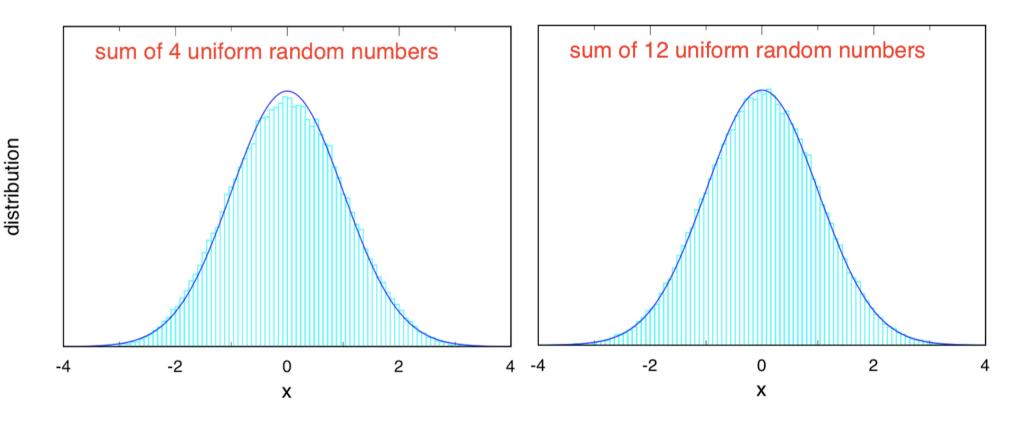
$$A' = \frac{1}{\sigma_A} (A - \langle A \rangle)$$

$$A'' = \mu_D + \sigma_D \left[\frac{1}{\sigma_A} (A - \langle A \rangle) \right]$$

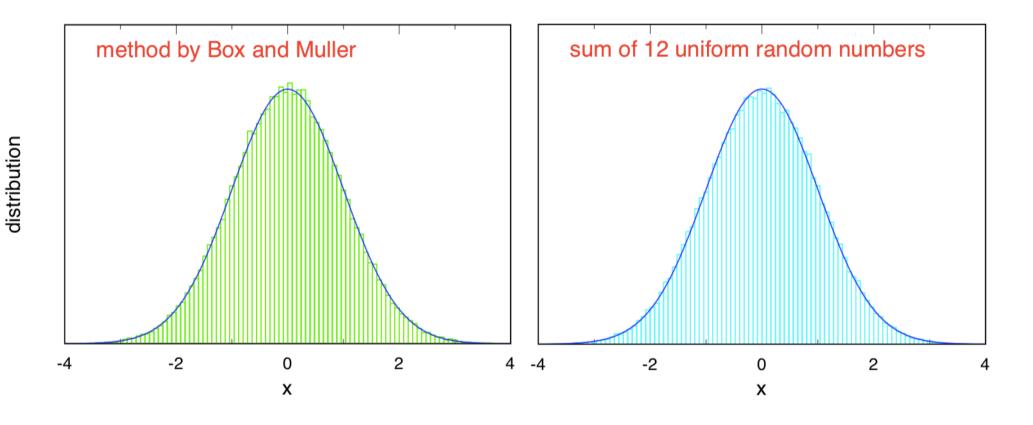
Gaussian with $\mu' = 0$ and $\sigma' = 1$

Gaussian with desired μ " = μ_D and σ " = σ_D

10'000 variates



10'000 variates



Course 07/1

Notions of probability. Central limit theorem

- Some simple definitions in probability theory
- Distribution of averages.
- Central limit theorem
- Central limit theorem for generating a Gaussian distribution