
Course 07/1

§ Some simple definitions in probability theory

§ Distribution of averages.

§ Central limit theorem

Notions of probability. Central limit theorem 

§ Central limit theorem for generating a Gaussian distribution



Some definitions in probability theory

Random number Unpredictable numerical quantity, result from an
experiment  (observable), which can vary discretely
or continuously.

Event Obtaining an observable.

Frequency f (x) = nx / n , where nx is the number of events with
observable x and n is the total number of events. 

Distribution of frequencies f (x) vs x. 

Probability 
(discrete variable)

Properties:
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Some definitions in probability theory
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Some definitions in probability theory
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Distribution of averages

Think at people ( j = 1,…N ) measuring in sequence the size of nails xi ( i = 1,…n ). 

Definition of “average” variable Ai

The series are fully independent !
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Properties of distribution of averages

Mean value

Variance
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Properties of distribution of averages
Variance

terms with j ≠ jʹ  are independent:

⟨ Dx ( j ) Dx ( jʹ ) ⟩ = ⟨ Dx ( j ) ⟩ · ⟨ Dx ( jʹ ) ⟩ = 0 
Hence, only terms with  j = jʹ  remain.

All x ( j )  are independent: mean of sums → sum of means
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Properties of distribution of averages : Summary

Mean value

µA = ⟨ A ⟩ = ⟨ x ⟩ = µx

Variance
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What about the full distribution ?
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Central limit theorem

§ Important theorem in statistics

§ In the limit N → ∞, a random number that corresponds to the sum of N random 
numbers is distributed according to a normal distribution (Gaussian), provided
the variances of all random numbers in the sum are: 

i. finite
ii. of the same order (there are some exceptions)



Central limit theorem for generating a Gaussian 
distribution

Computer-generated uniform 
distribution  p(x) of random 
numbers x between 0 and 1.
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Central limit theorem 
for generating a Gaussian distribution

p(x)

x
Mean value and variance

Approximate Gaussian variable

New variable: average over N values
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Central limit theorem 
for generating a Gaussian distribution

10’000 variates



Central limit theorem 
for generating a Gaussian distribution

10’000 variates



Course 07/1

§ Some simple definitions in probability theory

§ Distribution of averages.

§ Central limit theorem

Notions of probability. Central limit theorem 

§ Central limit theorem for generating a Gaussian distribution


