
Course 04/1

Molecular dynamics of Lennard-Jones liquid

- Rahman's simulation
- Liquid argon
- Set-up of the simulation
- Lennard-Jones interaction
- Equilibration

Rahman's simulation

Aneesur Rahman 1927-1987

PHYSICAL REVIEW

VOLUME 136. NUMBER 2A

19 OCTOBER 1964

Correlations in the Motion of Atoms in Liquid Argon*

A. RAHMAN

Argonne National Laboratory, Argonne, Illinois
(Received 6 May 1964)

A system of 864 particles interacting with a Lennard-Jones potential and obeying classical equations of motion has been studied on a digital computer (CDC 3600) to simulate molecular dynamics in liquid argon at 94.4°K and a density of 1.374 g cm⁻³. The pair-correlation function and the constant of self-diffusion are found to agree well with experiment; the latter is 15% lower than the experimental value. The spectrum of the velocity autocorrelation function shows a broad maximum in the frequency region $\omega = 0.25(k_BT/\hbar)$. The shape of the Van Hove function $G_s(r,t)$ attains a maximum departure from a Gaussian at about $t=3.0 \times 10^{-12}$ sec and becomes a Gaussian again at about 10^{-11} sec. The Van Hove function $G_d(r,t)$ has been compared with the convolution approximation of Vineyard, showing that this approximation gives a too rapid decay of $G_d(r,t)$ with time. A delayed-convolution approximation has been suggested which gives a better fit with $G_d(r,t)$; this delayed convolution makes $G_d(r,t)$ decay as t^4 at short times and as t at long times.

Liquid argon

Argon in the periodic table

Ne
↑
Ar
↓
Kr

chlorine ← argon → potassium

Atomic number (Z) 18

Group group 18 (noble gases)

Period period 3

Block p-block

Element category Noble gas

Electron [Ne] 3s² 3p⁶

configuration

Electrons per 2, 8, 8

shell

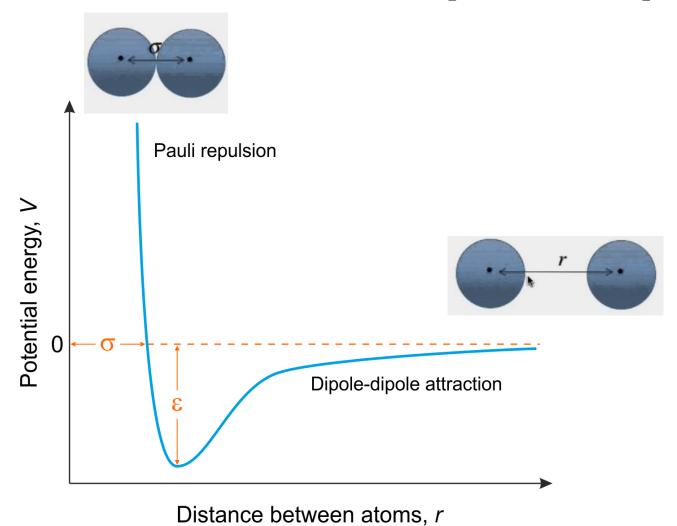
ARGON

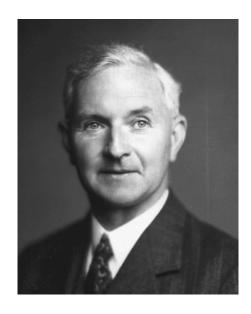
Melting point

83.81 K

Density from experimental data

PRESSURE		TEMPERATURE		DENSITY	
EAR	KP/CM ²	KELVIN	CELSIUS	GRAM-MOLE/	KG/ DM3
1.000	1.020	87-160	-185.990	0.034912	1.3947
1.013 1.092 1.110 1.200 1.211 1.229 1.339 1.359 1.400 1.477 1.498 1.600 1.625 1.649	1.033 1.114 1.131 1.224 1.235 1.254 1.365 1.386 1.428 1.506 1.528 1.632 1.632 1.657	87-284 88-000 88-150 88-911 89-000 89-150 90-000 90-150 91-150 91-834 92-000 92-150	-185.866 -185.150 -185.000 -184.239 -184.150 -184.000 -183.150 -183.000 -182.698 -182.150 -182.000 -181.316 -181.150 -181.000	0.034893 0.034784 0.034761 0.034644 0.034630 0.034607 0.034474 0.034474 0.034451 0.034403 0.034403 0.034293 0.034185 0.034134	1.3939 1.3896 1.3886 1.3839 1.3834 1.3825 1.3772 1.3762 1.3762 1.3763
1.785 1.800 1.810 1.956	1.820 1.835 1.846 1.995	93.000 93.091 93.150 94.000	-180 • 150 -180 • 059 -180 • 000 -179 • 150	0.033998 0.033983 0.033974 0.033836	1.3581 1.3576 1.3572 1.3517


https://nvlpubs.nist.gov/nistpubs/Legacy/TN/nbstechnicalnote361r1.pdf


Set-up of the simulation

- Number of particles: *N* = 864
- Volume: cubic simulation cell with side L = 34.8 Å to achieve the experimental density of 1.374 g/cm³.
- Microcanonical simulation with conserved energy with fixed volume and fixed number of particles: NVE simulation.
- Periodic boundary conditions
- Initialization with random positions
- Predictor-corrector integration algorithm with time step of $\Delta t = 0.01$ ps

Lennard-Jones interactions

$$U$$
 LJ (r) $= 4arepsilon \left[\left(rac{\sigma}{r}
ight)^{12} - \left(rac{\sigma}{r}
ight)^{6}
ight]$

John Lennard-Jones 1894-1956

Potential energy for liquid argon

Pair interaction potential

$$U = \sum_{I < J} U_{IJ} = \sum_{I < J} U^{LJ} (|r_I - r_J|)$$

$$U^{LJ}(r) = 4\varepsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]$$
 $\varepsilon / k_{B} = 120 \text{ K}, \quad \sigma = 3.4 \text{ Å}$

Atomic forces

$$F_{I\alpha} = -\frac{\partial U}{\partial r_{I\alpha}} = \sum_{J \neq I} \frac{\partial U_{IJ}}{\partial r} \bigg|_{r_{IJ} = |\vec{r}_I - \vec{r}_J|} \cdot \frac{\partial |\vec{r}_I - \vec{r}_J|}{\partial r_{I\alpha}}$$
$$= \sum_{J \neq I} 4\varepsilon \left[\frac{12}{r_{IJ}} \left(\frac{\sigma}{r_{IJ}} \right)^{12} - \frac{6}{r_{IJ}} \left(\frac{\sigma}{r_{IJ}} \right)^6 \right] \frac{r_{I\alpha} - r_{J\alpha}}{r_{IJ}}$$

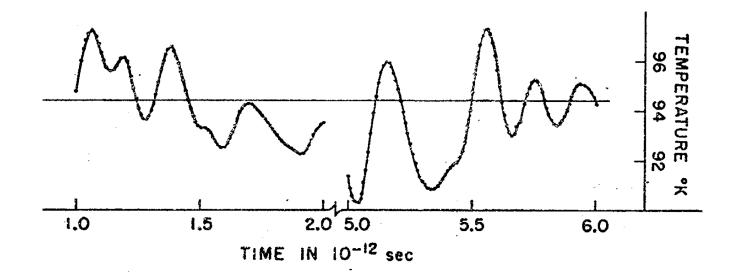
Cutoff-radius

$$r_c = 2.25 \sigma = 7.65 \text{ Å}$$
 (NB $L = 34.8 \text{ Å}$)

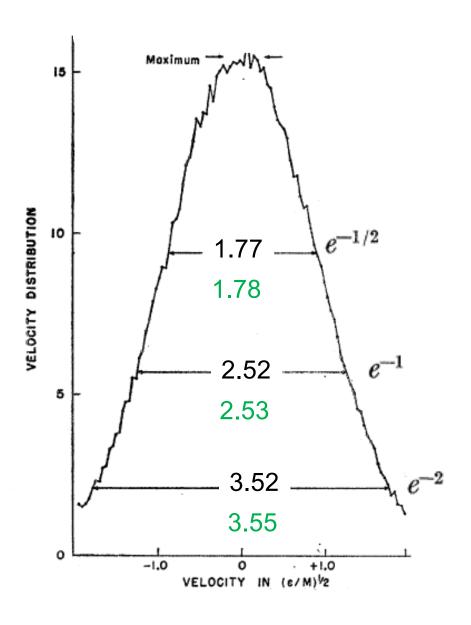
Equilibration

Equipartition theorem

$$\langle E_{\rm kin} \rangle = f \cdot \frac{kT}{2}$$


where f = 3N is the number of degrees of freedom

Instantaneous and average temperature


$$kT_{\text{inst}} = \frac{2 E_{\text{kin}}}{f}$$

where
$$E_{\text{kin}} = \sum_{I=1}^{N} \frac{1}{2} m v_I^2$$

$$3N \cdot \frac{kT}{2} = \langle E_{kin} \rangle$$

Velocity distribution at equilibrium

Close to the expected Gaussian of the Maxwellian distribution at 94.4 K.

Course 04/1

Molecular dynamics of Lennard-Jones liquid

- Rahman's simulation
- Liquid argon
- Set-up of the simulation
- Lennard-Jones interaction
- Equilibration