Course 03/2

Issues about accuracy and stability

- Stability of Verlet algorithm
- Gear algorithm
- Performance of various algorithms

Stability of Verlet algorithm

Harmonic oscillator

$$\dot{x}(t) = -\omega_0^2 x(t)$$

Verlet evolution:
$$x(t+h) = 2x(t) - x(t-h) - h^2 \omega_0^2 x(t)$$

Ansatz of solution on the discrete time steps: $x(t) = e^{i\omega t}$

Replacing in the Verlet evolution:

$$e^{i\omega(t+h)} = 2e^{i\omega t} - e^{i\omega(t-h)} - h^2\omega_0^2 e^{i\omega t}$$
$$e^{i\omega h} = 2 - e^{-i\omega h} - h^2\omega_0^2$$

$$2 - 2\cos(\omega h) = h^2 \omega_0^2$$

Stability of Verlet algorithm

$$x(t) = e^{i\omega t}$$
 \longrightarrow $2 - 2\cos(\omega h) = h^2\omega_0^2$

- If $h^2 \omega_0^2 > 4$, there is no real solution for ω , ω is imaginary

 → the solution diverges (easy to check!)
- If $\omega h \ll 1$, we expand the cosine:

$$2 - 2 \left[1 - \frac{(\omega h)^2}{2} + \frac{(\omega h)^4}{4!} + \dots \right] = h^2 \omega_0^2$$

$$(h\omega)^2 - \frac{1}{12} (h\omega)^4 = h^2 \omega_0^2$$

Correction term depending on
$$h$$
: $\lim_{h\to 0} \omega = \omega_0$

Gear algorithm

General form of interest: $\ddot{x}(t) = f(t)$ (Newton equation)

Four-component quantity:

$$\vec{y}_n = (x_n, \Delta t x_n, \frac{1}{2} \Delta t^2 x_n, \frac{1}{6} \Delta t^3 x_n)^T$$

1. Predictor step (Taylor expansion)

$$\dot{y}_{n+1}^{P} = (x_{n+1}^{P}, \Delta t \dot{x}_{n+1}^{P}, \frac{1}{2} \Delta t^{2} \dot{x}_{n+1}^{P}, \frac{1}{6} \Delta t^{3} \dot{x}_{n+1}^{P})^{T}$$

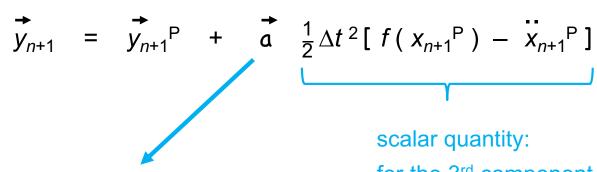
$$\dot{y}_{n+1}^{P} = A \dot{y}_{n}^{T} \qquad \text{with } A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

2. Force calculation at predicted position x_{n+1}^{P} :

$$f(x_{n+1}^{P})$$

Gear algorithm

3. Corrector step



4-component quantity

$$\stackrel{\rightarrow}{a} = \begin{pmatrix} 1/6 \\ 5/6 \\ 1 \\ 1/3 \end{pmatrix}$$

scalar quantity:

for the 3^{rd} component of y_{n+1} , the predicted acceleration x_{n+1}^{P} is replaced with the one calculated at step 2, i.e. $f(x_{n+1}^P)$.

- No iteration: just one force calculation.
- To optimize a, Gear used criteria of accuracy and stability under the assumption that the force only depends on position, not on velocity.

Performance of various algorithms

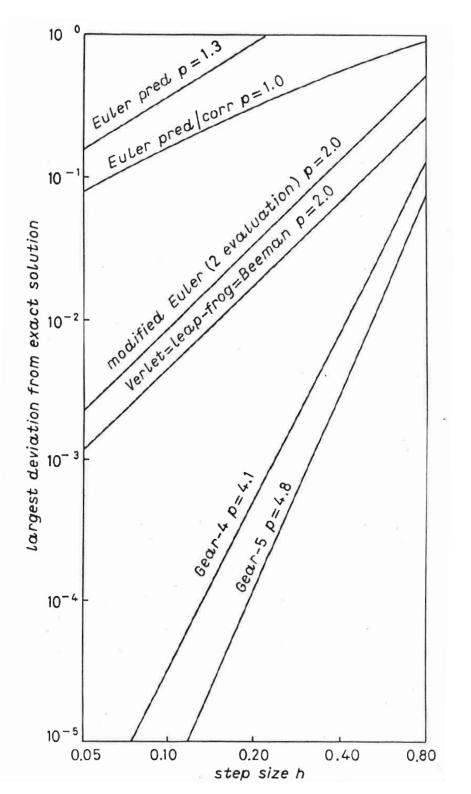
Tests on two cycles of an harmonic oscillator

1st criterion:

Accuracy with respect to exact solution as a function of time step *h*

Overall accuracy

- Least accurate: Euler method.
- Most accurate: Gear method.



Performance of various algorithms

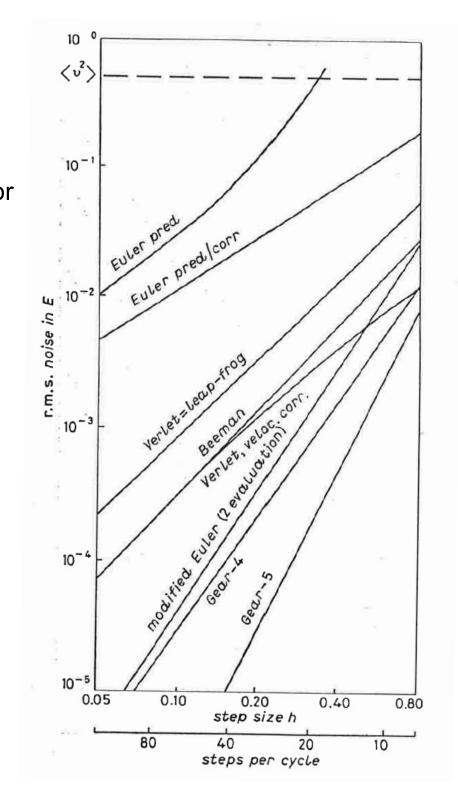
Tests on two cycles of an harmonic oscillator

2nd criterion:

Root-mean-square deviation from the linear regression line of the energy as a function of time step *h*

Conserved energy (rms noise)

- Least accurate: Euler method.
- Most accurate: Gear method.
- Overall the same considerations as for the overall accuracy, but Gear and Verlet appear now to be comparable at large time steps.



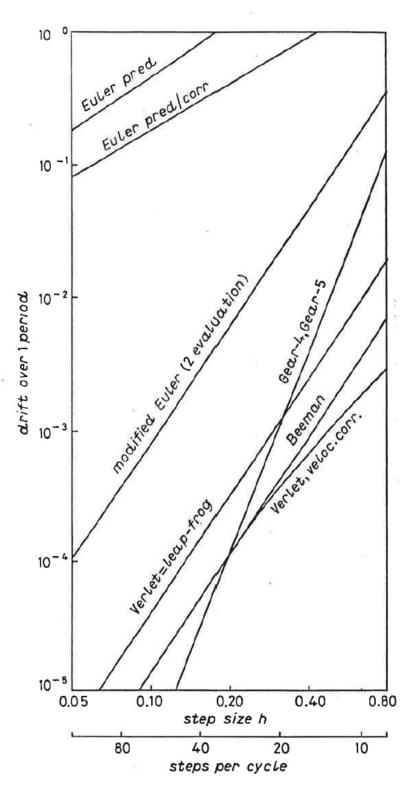
Performance of various algorithms

Tests on two cycles of an harmonic oscillator

 3^{rd} criterion: Drift of the line of energy line as a function of time step h

Drift in the energy

- Verlet beats Gear for large time steps.
- For long simulation, Gear algorithms are less efficient.



Course 03/2

Issues about accuracy and stability

- Stability of Verlet algorithm
- Gear algorithm
- Performance of various algorithms