Course 02/1

Ordinary differential equations (2/2)

= Predictor-corrector method
= Runge-Kutta method

» Some stability considerations



Predictor-corrector method

Through an example: the harmonic oscillator

p=f(x)

k=p/m

1. Predictor step (Euler)
X(t+At) = x(t)+ At ).<(t) = x(t) +At p(t)/m + o(At?)

p(t+At) = p(t)+At p(t) = p(t) +At F(x(t)) + o(At?)



Example of predictor-corrector

Harmonic oscillator

position

‘o[

velocity "C]_

"Wl

0.0m 0.57 I

Euler : +,0

predictor-corrector : o,e

N2 : 7 -
0
t

2.0m



Predictor-corrector method

2. Corrector step (implicit method)

t+At
x(t+At)=x(t)+f p(t)y/m dt' + o(At3)
t

t+AL
P(t+Al‘)=P(t)+f FOE) dit + o(At3)
t

2m

x(t+At) = x(t) +At (p(t)*[p(”“i) + 0 (At3)

F(t)+F(t+At)

+ o(At3
> ( )

p(t+At) = p(t) +At(

Estimate provided through Euler method
(predictor step)



Predictor-corrector scheme

1. Predictor step (Euler)
xP(t+At) = x(t) +At p(t)/m + o(At?)

pP(t+At) = p(t) +At F(t) + o(At2)

2. Corrector step
New “force” evaluation f(t+ At)=f(x")

xC(t+At) = x(t) +At<p(t)+pp(t+At)> + 0 (At3)
2m

; (PP(HN)—p(t))
=xP(t+At) + At om + 0 (At3)

PC(t+At) = p(t) + At <f(t)+2f(xp)) + 0 (AL?)

f(xP)—f(t)
=pP(t)+At< 5 > + 0 (At3)




Example of predictor-corrector

Harmonic oscillator

position

‘o[

velocity "C]_

"Wl

0.0m 0.57 I

Euler : +,0

predictor-corrector : o,e
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0
t

2.0m



Predictor-corrector
code for harmonic

oscillator

PROGRAM ONE_D_MOTION2
C
C Simplest predictor-corrector algorithm applied to
C a particle in one dimension under an elastic force.

PARAMETER (N=101,IN=5)
REAL T(N),V(N),X(N)

PI = 4.0%ATAN(1.0)
DT = 2.0%PI/100
X(1)= 0.0
T(1)= 0.0
V({1)= 1.0
DO 100 I =1, N-1
T(I+1) = I*DT
C .
C Predictor for position and velocity
C
X(I+1) = X(I)+V(I)*DT
V(I+1) = V(I)-X(I)*DT
C
C Corrector for position and velocity
C
X(I+1) = X(D)+(V(I)+V(I+1))*DT/2.0
V(I+1) = V(I)-(X(I)+X(I+1))*DT/2.0

100 CONTINUE
WRITE (6,999) (T(I),X(I),Vv(I),I=1,N,IN)
STOP

999 FORMAT (3F16.8)
END



Runga-Kutta method

The method can be developed at different orders.
Here, we illustrate the 2"d order for simplicity.

Xp+1
Implicit method Vori = VYo Tt f f(x,y)dx
Xn

1. Approximation of the integral

f(x,y) = f(Xn+1/z’yn+1/z) + (X_Xn+1/z)f'n+1/z o
odd
Xn+1
f f(x,y)dX = hf(Xpevs Yney) + / + o(h3)
Xn
we obtain

Yne1 = Yn + hf(Xn+1/2’yn+1/2) + O(h3)



Runga-Kutta method

Yne1 = Yn + hf(xn+1/z’yn+1/z) + O(hs)

2. Euler for f( X1, » Ve, )

Approximation to order o( h?) is sufficient

Yn+ve = Yn ¥ 720 (X, y5) + 0(h?)
We define

k= hf(xn, ¥n)

By combining we get

Y1t = Yo + hf(x,+h/2,y,+k/2) + o(h°)



Runga-Kutta method: advantages vs disadvantages

k= hi(xp, ¥n)

Vou1 = VYo + hf(x,+h/2,y,+k/2) + o(h?®)

—

Disadvantage: For every step, the function f is calculated twice.

Once for ( x,,, y¥,) and once for (x,+ h/2,y.,+ k/2).
In 41" order Runge-Kutta, the function is calculated four times.

Advantages: 1. Accuracy of order o ( h3).
2. No condition on easy differentiability (cf. Taylor).

3. Can start right away (cf. Multistep).
4. Does not require linearity of function f (cf. Implicit).
5. Size of "time” step can be changed at any time.



Some stability considerations

The stability of an algorithm is an important issue, it concerns the extent to which
the noise due to the round-off errors is amplified.

To illustrate this we compare the Euler method (two-point formula) with a scheme
that is derived from the derivative established through symmetric difference
(three-point formula):

Yne1 = VYn + hf(Xn:Yn) + O(hz)
Yne1 = Vi + 2hf(Xn:yn) + O(h3)
Case study:

dy
F(x,y) = o =Y y(x=0) =1

Exact analytical solution: y

I
¢))



Some stability considerations

Case study:
dy
F(x,y) = o =Y y(x=0) =1
Numerical solution
Start with Taylor method:
Yo = v+ 0+ | S £ 2] vo(m)

yi=1— h + %h +o(h)

Recursion formula with symmetric difference:

Yne1r = Yo — 2hyn + O(h3)



Some stability considerations: numerical evolution

Exact solution:

y

Table 2.2 Integration of dy/dx=—y with ¥ (0)=1 using

Eq. (2.27)

x Exact Error T Exact Error x Exact Error

0.2 .818731 -.000269 | 3.3 .036883 -.000369 | 5.5 .004087 -.001533

0.3 .740818 -.000382 | 3.4 .033373 -.000005 | 5.6 .003698 001618

0.4 670320 -.000440 | 3.5 .030197 -.000380 | 5.7 .003346 -.001858

0.5 .606531 -.000517 | 3.6 .027324 000061 | 5.8 .003028 .001989

0.6 .548812 -.000538 | 3.7 .024724 -.000400 | 5.9 .002739 -.002257
3.8 .022371 000133 | 6.0 .002479 002433

= For large x, the error increases
= The error changes sign at every step



How can we understand this?

Case study:

dy
f(x,y) = PV

Ansatz for numerical solution:

Arml = Arn1 _ 2 hArnD

re=1-2hr =

y(x=0) =1

Y,=Ar?"

re+2hr —1=0

—h +Vh%+1

e
I

~—h+(1+%h?+...)

— 1-nh

= —(1+h)



How can we understand this?

General solution: Vn

1R

A(1-h)" + B(=1)1(1+h)n

|

vanishing solution
(regular)

* |n a numerical solution, the coefficients A and B are going to be determined
by the choice of y, and y,. Since y, is approximate, B # 0 and the spurious
solution will eventually dominate.

= Even if we would start with the exact y4, the spurious solution would eventually
creep in because of the round-off errors.
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